-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathW241_Final_Project_v3.Rmd
233 lines (158 loc) · 6.25 KB
/
W241_Final_Project_v3.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
title: "W241 Class Project - Analysis"
output:
html_notebook: default
---
# 1. Load libraries, data
Load up the data and do simple analysis. This version uses the complete dataset.
```{r,error=FALSE, error=FALSE, message=FALSE, warning=FALSE, results='hide'}
# Libraries
library(lmtest)
library(sandwich)
library(ggplot2)
library(data.table)
library(stargazer)
library(ri)
library(multiwayvcov)
library(AER)
rm(list=ls())
d <- read.csv('~/Documents/mids-w241-final/Analysis/Combined Log.csv')
#d <- read.csv("C:/Users/Chris/OneDrive/Documents/MIDS/WS241/final/mids-w241-final/Analysis/Combined Log.csv")
d <- data.table(d)
# d <- d[complete.cases(d),] drops any row that is too incomplete - too stringent since we have some cols which are not essential
d <- d[!is.na(no)] # Just drop row with missing values
# Base data
head(d)
# Convert, transform data for analysis
# Drop some cols
d[,c('title','full_URL', 'reply_email_TO_BE_FILLED_IN_standard','posting_ID','notes') :=NULL]
# Set gender = 1 for Jane
d[treatment_assignment=='Jane_Control' | treatment_assignment=='Jane_Treat_High' | treatment_assignment=='Jane_Treat_Low',gender:=1]
d[treatment_assignment=='John_Control' | treatment_assignment=='John_Treat_High' | treatment_assignment=='John_Treat_Low',gender:=0]
# Set treatment variable = 0 for control, 1 for low, 2 for high
d[treatment_assignment=='Jane_Control' | treatment_assignment=='John_Control', treatment:=0]
d[treatment_assignment=='Jane_Treat_Low' | treatment_assignment=='John_Treat_Low', treatment:=1]
d[treatment_assignment=='Jane_Treat_High' | treatment_assignment=='John_Treat_High', treatment:=2]
# Alternatively, treat treatment types as categorical variables instead of continuous
d[treatment_assignment=='Jane_Treat_Low' | treatment_assignment=='John_Treat_Low', low_treatment:=1]
d[treatment_assignment=='Jane_Treat_High' | treatment_assignment=='John_Treat_High', high_treatment:=1]
d$low_treatment[is.na(d$low_treatment)] <- 0
d$high_treatment[is.na(d$high_treatment)] <- 0
d[low_treatment==1 | high_treatment==0, assigned:=1]
d$assigned[is.na(d$assigned)] <- 0
# Capture compliers
d[sent!='', compliers:=1]
d$compliers[is.na(d$compliers)] <- 0
# Labeling data
d$gender <- factor(d$gender,labels = c("Male", "Female"))
d$outcome <- factor(d$outcome, labels = c("No Response", "Response"))
d$bedrooms <- factor(d$bedrooms, labels = c("1-bedroom", "2-bedroom"))
```
# 2. Check data, do simple tables to check for balance
For the most part it looks like we have a balanced dataset.
```{r}
cat('Table of Outcomes:')
table(d$outcome)
cat('\nTable of Outcomes (By Gender):')
table(d$outcome, d$gender)
cat('\nTable of Outcomes (By Treatment):')
table(d$outcome, d$treatment)
cat('\nTable of Outcomes (By Treatment and Gender):')
table(d$outcome, factor(d$treatment_assignment))
cat('\nTable of Outcomes (By City):')
table(d$outcome,factor(d$city))
cat('\nTable of Outcomes (By Rooms):')
table(d$outcome,factor(d$bedrooms))
ggplot(d,aes(x=price))+geom_histogram()+facet_grid(~outcome)+labs(x="Price",y="Number")
# Sqft info has missing values => we can drop all cases (see above) but for now leave this alone
# Similar but somewhat worse issue for professional, same.email info
```
# 3. Analysis
# Simple Analysis
Doing chi-squared test of independence. Can't reject.
```{r}
tbl <- table(d$outcome,d$gender)
chisq.test(tbl)
tbl <- table(d$outcome,d$treatment)
chisq.test(tbl)
tbl <- table(d$outcome,factor(d$treatment_assignment))
tbl
chisq.test(tbl)
```
# Regression
*Blocking - by gender, by city, bedroom?
*Cluster - none
*Compliance - none
*Spillover - yes, with same email; not sure how to incorporate
Basic model
Outcome variable = alpha + B_high + B_low + gender + covariates
```{r}
# Model 1 - Basic model
m1 <- lm(outcome~treatment,data=d)
stargazer(m1,type='text')
coeftest(m1, vcovHC(m1)) # Robust se
# Model 2 - Treatment & gender
m2 <- lm(outcome~treatment*gender,data=d)
stargazer(m2,type='text')
coeftest(m2, vcovHC(m2)) # Robust se
# Model 3 - Treatment & gender + covariates
m3 <- lm(outcome~treatment*gender+factor(city)+factor(bedrooms),data=d)
stargazer(m3,type='text')
coeftest(m3, vcovHC(m3)) # Robust se
# Model 4 - Treatment & gemder + covariates
m4 <- lm(outcome~treatment*gender+factor(city)+factor(bedrooms)+price,data=d)
stargazer(m4,type='text')
coeftest(m4, vcovHC(m4)) # Robust se
```
We cannot reject the null hypothesis of no effect.
Alternative model with treatment variables coded as categorical factors
```{r}
# Model 1 - Basic model
m1 <- lm(outcome ~ low_treatment + high_treatment,data=d)
stargazer(m1,type='text')
coeftest(m1, vcovHC(m1)) # Robust se
# Model 2 - Treatment & gender
m2 <- lm(outcome~low_treatment + high_treatment*gender,data=d)
stargazer(m2,type='text')
coeftest(m2, vcovHC(m2)) # Robust se
# Model 3 - Treatment & gender + covariates
m3 <- lm(outcome~low_treatment + high_treatment + gender + factor(city) + factor(bedrooms) + price,data=d)
stargazer(m3,type='text')
coeftest(m3, vcovHC(m3)) # Robust se
```
## Try with RI
```{r}
di <- d
di[treatment==2,treatment:=1]
di[,city:=as.numeric(factor(d$city))]
hist(di$treatment)
hist(di$city)
y <- d$outcome
Z <- d$treatment
cls <- d$gender
blk <- d$city
perms <- genperms(Z, clustvar = NULL, blockvar = blk)
probs <- genprobexact(Z, clustvar = NULL, blockvar = blk) # probability of treatment
ate <- estate(y,Z,prob=probs) # estimate the ATE
Ys <- genouts(y,Z,ate=0) # generate potential outcomes under sharp null of no effect
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under sharp null
dispdist(distout, ate, quantiles = c(0.025, 0.975), display.plot = TRUE) # display characteristics of sampling dist. for inference
```
## CACE
```{r}
# Using Models # NEEDS WORK
itt_fit <- lm(outcome ~ treatment, data = d)
summary(itt_fit)
coeftest(itt_fit, vcovHC(itt_fit))
itt_d_fit <- lm(compliers ~ treatment, data = d)
coeftest(itt_d_fit)
coeftest(itt_d_fit,vcovHC(itt_d_fit))
itt_fit$coefficients[2] / itt_d_fit$coefficients[2]
```
```{r}
# Manually compute CACE
itt <- d[, mean(outcome[assigned == 1]) - mean(outcome[assigned == 0])]
prop_treated <- d[ , mean(compliers/assigned, na.rm = T)]
prop_treated <- d[assigned == 1, mean(compliers)]
sprintf("%.10f", itt / prop_treated)
```