-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpredict_funs.py
209 lines (183 loc) · 7.11 KB
/
predict_funs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import sys
sys.path.append('../')
#from segment_anything import SamPredictor, sam_model_registry
from models.sam import SamPredictor, sam_model_registry
from models.sam.utils.transforms import ResizeLongestSide
from models.sam.modeling.prompt_encoder import attention_fusion
import pandas as pd
from skimage.measure import label
#Scientific computing
import numpy as np
import os
#Pytorch packages
import torch
from torch import nn
import torch.optim as optim
import torchvision
from torchvision import datasets
#Visulization
import matplotlib.pyplot as plt
from torchvision import transforms
from PIL import Image
#Others
from torch.utils.data import DataLoader, Subset
from torch.autograd import Variable
import matplotlib.pyplot as plt
import copy
from dataset_bone import MRI_dataset
import torch.nn.functional as F
from torch.nn.functional import one_hot
from pathlib import Path
from tqdm import tqdm
from losses import DiceLoss
from dsc import dice_coeff
import cv2
import torchio as tio
import slicerio
import pickle
import nrrd
import PIL
import monai
import cfg
from funcs import *
args = cfg.parse_args()
from monai.networks.nets import VNet
def drawContour(m,s,RGB,size,a=0.8):
"""Draw edges of contour 'c' from segmented image 's' onto 'm' in colour 'RGB'"""
# Fill contour "c" with white, make all else black
#ratio = int(255/np.max(s))
#s = np.uint(s*ratio)
# Find edges of this contour and make into Numpy array
contours, _ = cv2.findContours(np.uint8(s),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
m_old = m.copy()
# Paint locations of found edges in color "RGB" onto "main"
cv2.drawContours(m,contours,-1,RGB,size)
m = cv2.addWeighted(np.uint8(m), a, np.uint8(m_old), 1-a,0)
return m
def IOU(pm, gt):
a = np.sum(np.bitwise_and(pm, gt))
b = np.sum(pm) + np.sum(gt) - a +1e-8
return a / b
def inverse_normalize(tensor, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
mean = torch.as_tensor(mean, dtype=tensor.dtype, device=tensor.device)
std = torch.as_tensor(std, dtype=tensor.dtype, device=tensor.device)
if mean.ndim == 1:
mean = mean.view(-1, 1, 1)
if std.ndim == 1:
std = std.view(-1, 1, 1)
tensor.mul_(std).add_(mean)
return tensor
def remove_small_objects(array_2d, min_size=30):
"""
Removes small objects from a 2D array using only NumPy.
:param array_2d: Input 2D array.
:param min_size: Minimum size of objects to keep.
:return: 2D array with small objects removed.
"""
# Label connected components
structure = np.ones((3, 3), dtype=int) # Define connectivity
labeled, ncomponents = label(array_2d, structure)
# Iterate through labeled components and remove small ones
for i in range(1, ncomponents + 1):
locations = np.where(labeled == i)
if len(locations[0]) < min_size:
array_2d[locations] = 0
return array_2d
def create_box_mask(boxes,imgs):
b,_,w,h = imgs.shape
box_mask = torch.zeros((b,w,h))
for k in range(b):
k_box = boxes[k]
for box in k_box:
x1,y1,x2,y2 = int(box[0]),int(box[1]),int(box[2]),int(box[3])
box_mask[k,y1:y2,x1:x2] = 1
return box_mask
# Calculate the percentile values
def torch_percentile(tensor, percentile):
k = 1 + round(.01 * float(percentile) * (tensor.numel() - 1))
return tensor.reshape(-1).kthvalue(k).values.item()
def pred_attention(image,vnet,slice_id,device):
class Normalize3D:
"""Normalize a tensor to a specified mean and standard deviation."""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, x):
# Normalize x
return (x - self.mean) / self.std
def prob_rescale(prob, x_thres=0.05, y_thres=0.8,eps=1e-3):
grad_1 = y_thres / x_thres
grad_2 = (1 - y_thres) / (1 - x_thres)
mask_eps = prob<=eps
mask_1 = (eps < prob) & (prob <= x_thres)
mask_2 = prob > x_thres
prob[mask_1] = prob[mask_1] * grad_1
prob[mask_2] = (prob[mask_2] - x_thres) * grad_2 + y_thres
prob[mask_eps]=0
return prob
def view_attention_2d(mask_volume, axis=2,eps=0.1):
mask_eps = mask_volume<=eps
mask_volume[mask_eps]=0
attention = np.sum(mask_volume, axis=axis)
return (attention) / (np.max(attention) +1e-8)
norm_transform = transforms.Compose([
Normalize3D(0.5, 0.5)
])
depth_image = image.shape[3]
resize = tio.Resize((64,64,64))
image = resize(image)
image_tensor = image.data
image_tensor = torch.unsqueeze(image_tensor,0)
image_tensor = norm_transform(image_tensor).float().to(device)
with torch.set_grad_enabled(False):
pred_mask = vnet(image_tensor)
pred_mask = torch.sigmoid(pred_mask)
pred_mask = pred_mask.detach().cpu().numpy()
# the slice id after rescale to 64*64*64
slice_id_reshape = int(slice_id*64/depth_image)
slice_min = max(slice_id_reshape-8,0)
slice_max = min(slice_id_reshape+8,64)
return prob_rescale(view_attention_2d(np.squeeze(pred_mask[:,:,:,:,slice_min:slice_max])))
def evaluate_1_volume_withattention(image_vol,model,device,slice_id=None,target_spacing=None,atten_map=None):
image_vol.data = image_vol.data / (image_vol.data.max()*1.0)
voxel_spacing = image_vol.spacing
if target_spacing and (voxel_spacing != target_spacing):
resample = tio.Resample(target_spacing,image_interpolation='nearest')
image_vol = resample(image_vol)
image_vol = image_vol.data[0]
slice_num = image_vol.shape[2]
if slice_id is not None:
if slice_id>slice_num:
slice_id = -1
else:
slice_id = slice_num//2
img_arr = image_vol[:,:,slice_id]
img_arr = np.array((img_arr-img_arr.min())/(img_arr.max()-img_arr.min()+0.00001)*255,dtype=np.uint8)
img_3c = np.tile(img_arr[:, :,None], [1, 1, 3])
img = Image.fromarray(img_3c, 'RGB')
Pil_img = img.copy()
img = transforms.Resize((1024,1024))(img)
transform_img = transforms.Compose([
transforms.ToTensor()
])
img = transform_img(img)
img = min_max_normalize(img)
if img.mean()<0.1:
img = monai.transforms.AdjustContrast(gamma=0.8)(img)
imgs = torch.unsqueeze(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img),0).to(device)
with torch.no_grad():
img_emb= model.image_encoder(imgs)
sparse_emb, dense_emb = model.prompt_encoder(points=None,boxes=None,masks=None)
if not atten_map is None:
# fuse the depth direction attention
img_emb = model.attention_fusion(img_emb,atten_map)
pred, _ = model.mask_decoder(
image_embeddings=img_emb,
image_pe=model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_emb,
dense_prompt_embeddings=dense_emb,
multimask_output=True,
)
pred = pred[:,1,:,:]
ori_img = inverse_normalize(imgs.cpu()[0])
return ori_img,pred,voxel_spacing,Pil_img,slice_id