-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrials.Rmd
990 lines (830 loc) · 34.5 KB
/
Trials.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
---
jupyter:
jupytext:
formats: ipynb,Rmd
text_representation:
extension: .Rmd
format_name: rmarkdown
format_version: '1.2'
jupytext_version: 1.7.1
kernelspec:
display_name: Python 3
language: python
name: python3
---
```{python}
import drosophila_utils
import powerlaw
# Network analysis
import networkx as nx
from scipy import sparse
from fast_pagerank import pagerank_power
# Data handling
import pandas as pd
# Visualization
import matplotlib
import matplotlib.pyplot as plt
#import igraph as ig
#import cairocffi as cairo
# Miscellaneous
import time
import os
import numpy as np
from tqdm import tqdm
```
```{python}
# False -> avoid running time-consuming cells
PATIENCE = True
```
## Importing datasets
- neurons_dataframe contains neuron number (body_id). The body_id is an [unique identifier](https://en.wikipedia.org/wiki/Unique_identifier#:~:text=A%20unique%20identifier%20(UID)%20is,with%20an%20atomic%20data%20type.). It also contains the neuron cell type (type) and the neuron unique name (instance).
- synapses_dataframe contains the sparse connectivity matrix of the network;
- roi_dataframe contains also the region of interest of the connection, but some of them are repeated, i.e. we have the same couple of connecting neurons in different regions (maybe they are not sure)
https://asajadi.github.io/fast-pagerank/
```{python}
neurons_dataframe, synapses_dataframe, roi_dataframe = utils.read_datasets()
```
```{python}
neurons_dataframe.head()
```
```{python}
print(synapses_dataframe.head())
print(f"Number of unique synapses: {synapses_dataframe['synaps'].nunique()}")
print(f"Length of synapses dataset: {len(synapses_dataframe)}")
# NOTE: the weight of the synapses dataset is the sum of all the weights from the ROI
```
```{python}
```
#### Hemibrain regions of interest
```{python}
# sanity check
assert roi_dataframe['synaps'].nunique() == len(roi_dataframe)
```
```{python}
# key is superset, value is list of roi
roi_supersets = {
'AL': ['AL(L)', 'AL(R)'],
'CX': ['FB', 'EB', 'PB', 'NO', 'AB(L)', 'AB(R)'],
'GNG': ['GNG'],
'INP': ['CRE(L)', 'CRE(R)', 'SCL(L)', 'SCL(R)', 'IB', 'ICL(L)', 'ICL(R)', 'ATL(L)', 'ATL(R)', 'IB'],
'LH': ['LH(R)'],
'LX': ['BU(L)', 'BU(R)','LAL(L)', 'LAL(R)'],
'MB': ['CA(R)','PED(R)',"a'L(L)", "a'L(R)", 'aL(L)', 'aL(R)', "b'L(L)", "b'L(R)", 'bL(L)', 'bL(R)', 'gL(L)', 'gL(R)'],
'OL': ['AME(R)','ME(R)','LO(R)', 'LOP(R)'],
'PENP': ['SAD','CAN(R)','FLA(R)'],
'SNP': ['SIP(L)', 'SIP(R)', 'SLP(R)', 'SMP(L)', 'SMP(R)', 'SPS(L)', 'SPS(R)'],
'VLNP': ['AOTU(R)','AVLP(R)','PVLP(R)','PLP(R)','WED(R)'],
'VMNP': ['VES(L)', 'VES(R)','EPA(L)', 'EPA(R)','GOR(L)', 'GOR(R)','SPS(L)', 'SPS(R)','IPS(R)'],
'NotPrimary': ['NotPrimary']
}
#roi_dataframe['superset'] = utils.map_roi_to_superset(roi_dataframe['roi'].tolist(), roi_supersets)
roi_dataframe.head()
```
```{python}
# sanity check
roi = list(roi_dataframe['roi'].unique())
removed = []
for elem in roi:
for key, value in roi_supersets.items():
if elem in value and elem not in removed:
removed.append(elem)
remains = [x for x in roi if x not in removed]
print(f"Non-included sections: {remains}")
```
## Graph
```{python}
# neuron type is attribute of the neuron in the graph, we directly extract it from the dataframe
nodes = neurons_dataframe[['bodyId', 'type']]
nodes_attr_dict = nodes.set_index('bodyId')['type'].to_dict()
links = roi_dataframe[['synaps', 'roi', 'superset', 'weight']]
links_attr_dict_1 = links.set_index('synaps')['roi'].to_dict()
links_attr_dict_2 = links.set_index('synaps')['superset'].to_dict()
links_attr_dict_3 = links.set_index('synaps')['weight'].to_dict()
```
```{python}
print((roi_dataframe['synaps'][0]))
print(type(roi_dataframe['synaps'][0]))
```
```{python}
graph = nx.Graph()
graph.add_nodes_from(neurons_dataframe['bodyId'])
nx.set_node_attributes(graph, nodes_attr_dict, 'type')
graph.add_edges_from(roi_dataframe['synaps'])
nx.set_edge_attributes(graph, links_attr_dict_1, 'roi')
nx.set_edge_attributes(graph, links_attr_dict_2, 'superset')
# nx.set_edge_attributes(graph, links_attr_dict_3, 'weight')
```
```{python}
# sanity check
print(f"Node: {list(graph.nodes)[0]}")
print(f"Node attributes: {graph.nodes[200326126]}")
print(f"Edge: {list(graph.edges)[0]}")
print(f"Edge attributes: {graph.edges[(200326126, 264083994)]}")
```
#### Adjacency matrix
```{python}
# key is superset, value is list of roi
roi_supersets = {
'AL': 1,
'CX': 2,
'GNG': 3,
'INP': 4,
'LH': 5,
'LX': 6,
'MB': 7,
'OL': 8,
'PENP': 9,
'SNP': 10,
'VLNP': 11,
'VMNP': 12,
'NotPrimary': 13,
}
roi_numerical = {}
i = 1
# create a mapping also for roi
for roi in roi_dataframe['roi'].unique():
roi_numerical[roi]=i
i = i + 1
def map_roi_to_number(links):
def find_attr(roi):
return roi_numerical[roi]
res = list(map(find_attr, links))
return res
def map_superset_to_number(links):
def find_attr(roi):
return roi_supersets[roi]
res = list(map(find_attr, links))
return res
temp = roi_dataframe.copy()
temp['superset_number'] = map_superset_to_number(roi_dataframe['superset'].tolist())
temp['roi_number'] = map_roi_to_number(roi_dataframe['roi'].tolist())
# map the synaps superset to numeric categorical, and use it as weight
temp['weight'] = temp['superset_number']
links = temp[['synaps', 'roi', 'superset', 'weight']]
links_attr_dict_1 = links.set_index('synaps')['weight'].to_dict()
# nx.set_edge_attributes(graph, links_attr_dict_1, 'weight')
```
```{python}
colors = ['#000000', '#67e682', '#cccccc', '#f3747e', '#8095cc', '#452664',
'#f2d7aa', '#b9f6d5', '#dcfe17', '#2727e4', '#38f5a5', '#c44048',
'#CC5B01', '#0793c6', '#ffffff']
scale = list(range(0,15))
cmap=matplotlib.colors.ListedColormap(colors)
norm=matplotlib.colors.BoundaryNorm(scale, len(colors))
```
```{python}
print(list(roi_supersets.keys()))
```
```{python}
data = nx.adjacency_matrix(graph).astype(np.int8).todense()
f = plt.figure(figsize=(15,15))
ax = plt.axes([0, 0.05, 0.9, 0.9 ]) #left, bottom, width, height
im = ax.matshow(data, cmap=cmap, norm=norm)
cax = plt.axes([0.95, 0.05, 0.05,0.9 ])
cbar = plt.colorbar(mappable=im, cax=cax, ticks=np.linspace(0, 14, 14, endpoint=False) + 1/2, spacing='uniform', label='Superset connection type')
# cbar.ax.set_yticklabels(['< -1', '0', '> 1']) # vertically oriented colorbar
ticks = [str(i) for i in range(1,14)]
cbar.ax.set_yticklabels(['No link'] + list(roi_supersets.keys())) # vertically oriented colorbar
cbar.ax.axes.tick_params(length=5)
plt.show()
```
#### Non-randomness coefficient
```{python}
if PATIENCE:
start_time = time.time()
loc, glob = nx.non_randomness(graph)
print(glob)
end_time = time.time()
print("Total time: {:.2f} seconds".format((end_time - start_time)))
```
#### Degree distribution and properties
See https://stackoverflow.com/questions/49908014/how-can-i-check-if-a-network-is-scale-free and https://pypi.org/project/powerlaw/
```{python}
degree = np.array([ d for n, d in graph.degree()])
print(degree.mean())
```
```{python}
# used for degree distribution and powerlaw test
# reverse = True to have the cumulative distribution
degree_sequence = sorted([d for n, d in graph.degree()], reverse=True)
# Power laws are probability distributions with the form:p(x)∝x−α
# NOTE: xmin is the data value beyond which distributions should be fitted.
# If None an optimal one will be calculated
fit = powerlaw.Fit(degree_sequence)
fig2 = fit.plot_pdf(color='b', linewidth=2)
fit.power_law.plot_pdf(color='g', linestyle='--', ax=fig2)
plt.legend(["data", "power law"])
R, p = fit.distribution_compare('power_law', 'exponential', normalized_ratio=True)
print (f"Loglikelihood: {R:.2f}, p-value: {p:.2e}")
```
```{python}
plt.figure(figsize=(10, 6))
fit.distribution_compare('power_law', 'lognormal')
fig4 = fit.plot_ccdf(linewidth=3, color='black')
fit.power_law.plot_ccdf(ax=fig4, color='r', linestyle='--') #powerlaw
fit.lognormal.plot_ccdf(ax=fig4, color='g', linestyle='--') #lognormal
fit.stretched_exponential.plot_ccdf(ax=fig4, color='b', linestyle='--') #stretched_exponential
plt.legend(["data", "power law", "log-normal", "stretched_exponential"])
```
```{python}
#bins = np.logspace(0, 4, 100)
bins = 100
y, x = np.histogram(degree, bins=bins)
x = (x[1:]+x[:-1])/2
```
```{python}
# plot degree bins
plt.loglog()
plt.plot(x, y, 'ro')
plt.xlabel('Log Degree log(k)')
plt.ylabel('Log Frequency ')
plt.title('Degree distribution')
plt.grid()
plt.show()
```
# Coarse graining
To apply our coarse graining procedure we aggregate the nodes with their nearest neighbors, where the concept of nearest is choosen using one of the following centrality measures:
- **local page rank**. The local page rank gives the proximity of the nodes with respect to the chosen node. So the second highest node is gonna be merged with the one where the lpr is computed. Networkx creates each time the sparse matrix, which is a time consuming task. We need to compute the page rank several times, and so chosen to use another representation;
- **link strength**. We merge the more connected or the less connected (with the idea that they are not influencing the graph properties)
## Approximate visualization of main brain regions
```{python}
class CoarseGrainer:
def __init__(self, nodes, connectivity):
"""
Parameters:
nodes: np array size (N,) with node name where N is number of nodes
connectivity: np array size (M, 3) where M is the number of links. We have M<<N**2
"""
self.nodes = nodes
self.connectivity = connectivity
self.N = self.nodes.size
self.M = self.connectivity.shape[0]
self.powerlaw = np.array([])
self.avg_deg_conn = np.array([])
self.density = [self.M/self.N**2]
print(f'Initialized with connectivity matrix of density: {self.M/self.N**2}')
def set_metrics(self, metric_vect, node_id, minmax):
"""
Define the metric vector and the node_id to be used at the next iteration
Parameters:
node_id (string): Name of the selected node
metric_vect (np array(2, B)): (connected_node ,metric) of the network wrt @node_id
minmax(int): 1 if looking for max of the metric, -1 if looking for min
"""
self.sel_node = node_id
self.metric = metric_vect
self.minmax = minmax
def fusion(self, min_links=10):
"""
Select the nearest node to @self.sel_node. Fuse the two node togheter by keeping the density
of connections constant, selecting randomly the links to keep among the possible ones.
Eliminate self loops
"""
if self.metric.size != 0:
# Select nearest node
nearest_node_id = self.metric[:, 0][ np.argmax( self.minmax*self.metric[:, 1] ) ]
nearest_node = np.where( self.nodes==nearest_node_id )
# Eliminate the nearest node from the node list
self.nodes = np.delete(self.nodes, nearest_node)
# Compute difference in connectivity to keep the density fixed
dM = int( self.M*(2/self.N-1/self.N**2) )
# Select the connections of the nearest node
connections = np.hstack( (np.where(self.connectivity[:,0]==nearest_node_id),
np.where(self.connectivity[:,1]==nearest_node_id) ) )
connections = np.unique(connections) # keep only the uniques ones
# Randomly select the connections by keeping the density fixed
min_links = min( min_links, connections.size)
connections_selected = np.random.choice(connections, size=max(min_links, connections.size-dM), replace=False)
# (----?----) Add selection with probability proportional to the weight (----?----)
# Select the non-selected connections
connestions_not_selected = np.setdiff1d(connections, connections_selected)
# Join connection of the deleted node to the other
self.connectivity[:,0][ connections_selected] = self.sel_node
self.connectivity[:,1][ connections_selected] = self.sel_node
# Eliminate non-selected connections and self loops
self.connectivity = np.delete(self.connectivity, connestions_not_selected, axis=0)
self.connectivity = self.connectivity[ self.connectivity[:,0] != self.connectivity[:,1] ]
# Update nodes number and connectivity
self.N -= 1
self.M = self.connectivity.shape[0]
def _get_weight(self, node_id):
"""
Get the weights of the links connecting @node_id to other nodes. In particular returns
an array of size (2, B) where the first column is the ID of the connected node and
the second column contains the weights
"""
temp1 = self.connectivity[:, 1:3][ self.connectivity[:,0]==node_id ]
temp2 = self.connectivity[:, 0:3:2][ self.connectivity[:,1]==node_id ]
return np.vstack( (temp1, temp2))
def _upd_stat(self):
"""
Updates the statistics. Notice that this function is very time consuming since we need
to instantiate the graph object. In partiucular we compute:
- The coefficient of the power law of the degree distribution
- The average of the degree connectivity
"""
# Graph instantiaton
synapses= list(zip(self.connectivity[:,0], self.connectivity[:,1]))
graph_coarsed = nx.Graph()
graph_coarsed.add_nodes_from(self.nodes)
graph_coarsed.add_edges_from(synapses)
# Degree distribution
degree = sorted([d for n, d in graph_coarsed.degree()], reverse=True)
fit = powerlaw.Fit(degree)
if self.powerlaw.size==0:
self.powerlaw = np.array([fit.alpha, fit.sigma])
else:
self.powerlaw = np.vstack( (self.powerlaw, [fit.alpha, fit.sigma]) )
# Degree connectivity
avg_degree_connectivity = nx.average_degree_connectivity(graph_coarsed)
avg_degree_connectivity = np.array([i for k,i in avg_degree_connectivity.items()])
self.avg_deg_conn = np.append(self.avg_deg_conn, int(avg_degree_connectivity.mean()) )
def plot_stat(self):
"""
Plot the two statistics collected in the experiment.
"""
fig, ax = plt.subplots(1, 2, figsize=(12,8))
ax[0].set_xlabel('Iteration $10^3$')
ax[0].set_ylabel('Coefficient of the power law')
ax[0].set_title('Evolution of the power law distribution')
ax[0].plot(self.powerlaw[:,0], 'o--', color='blue', label='Coef')
ax[0].fill_between(np.arange(self.powerlaw.shape[0]), (self.powerlaw[:,0]+self.powerlaw[:,1]),
(self.powerlaw[:,0]-self.powerlaw[:,1]), alpha=0.3, label='Error', color='green' )
ax[0].legend()
ax[1].set_xlabel('Iteration $10^3$')
ax[1].set_ylabel('Average degree connectivity')
ax[1].set_title('Evolution of the average degree connectivity')
ax[1].plot(self.avg_deg_conn, 'o--', color='blue')
plt.show()
def _test(self, Niter, Nupd_stat=1000, min_links=10):
"""
Apply the coarse graining for @Niter iterations and updating the statistics each @Nupd_stat iter
"""
for i in tqdm(range(Niter)):
node_id = np.random.choice(self.nodes)
metric_vect = self._get_weight(node_id)
self.set_metrics(metric_vect, node_id, +1)
self.fusion(min_links=min_links)
if i%Nupd_stat == 0:
self._upd_stat()
self.density.append(self.M/self.N**2)
print(f'Finalized with connectivity matrix of density: {self.M/self.N**2}')
```
```{python}
nodes = np.array(neurons_dataframe['bodyId'])
M = len(synapses_dataframe['bodyId_pre'])
connectivity = np.hstack( (np.array(synapses_dataframe['bodyId_pre']).reshape(M,1),
np.array(synapses_dataframe['bodyId_post']).reshape(M,1),
np.array( synapses_dataframe['weight']).reshape(M,1))
)
```
```{python}
coarse = CoarseGrainer(nodes, connectivity)
```
```{python}
start_time = time.time()
coarse._test(20000)
end_time = time.time()
print("Total time: {:.2f} seconds".format((end_time - start_time)))
```
```{python}
coarse.plot_stat()
```
```{python}
d = np.array( coarse.density[0:-1:200] )
plt.plot(d)
plt.show()
```
```{python}
coarse.M/coarse.N**2
```
```{python}
synapses= list(zip(coarse.connectivity[:,0], coarse.connectivity[:,1]))
graph_coarsed = nx.Graph()
graph_coarsed.add_nodes_from(coarse.nodes)
graph_coarsed.add_edges_from(synapses)
```
```{python}
degree = np.array([ d for n, d in graph_coarsed.degree()])
print(np.mean(degree))
#bins = np.logspace(0, 4, 100)
bins = 100
y, x = np.histogram(degree, bins=bins)
x = (x[1:]+x[:-1])/2
# plot degree bins
plt.loglog()
plt.plot(x, y, 'ro')
plt.xlabel('Log Degree log(k)')
plt.ylabel('Log Frequency ')
plt.title('Degree distribution')
plt.grid()
plt.show()
```
```{python}
matfig = plt.figure(figsize=(20,20))
adj = nx.adjacency_matrix(graph_coarsed).todense()
plt.matshow(adj, fignum=matfig.number, cmap=plt.get_cmap("binary"))
plt.show()
```
## Coarse graining through clustering
```{python}
from community import induced_graph
from sklearn.cluster import AgglomerativeClustering
from collections import Counter
```
```{python}
for node1, node2, datas in graph.edges(data=True):
A = np.array(datas.get('superset', None))
c = Counter(A.flat).most_common(1)
d = c
print(d)
break
#ret[node1, node2]
```
```{python}
def my_induced_graph(partition, graph, super_map):
"""
super_map is dictionary 'name': value
"""
ret = nx.Graph()
ret.add_nodes_from(partition.values())
for node1, node2, datas in graph.edges(data=True):
super_vec = np.zeros( len(super_map) )
edge_weight = datas.get('weight', 1)
edge_superset = datas.get('superset', None)
com1 = partition[node1]
com2 = partition[node2]
w_prec = ret.get_edge_data(com1, com2, {'weight': 0}).get('weight', 1)
superset_prec = ret.get_edge_data(com1, com2, {'superset': super_vec}).get('superset', super_vec)
super_vec[super_map[edge_superset]-1] += 1
ret.add_edge(com1, com2, **{'weight': w_prec + edge_weight,
'superset': superset_prec + super_vec} )
inv_map = {v-1: k for k, v in super_map.items()} # 'value' : name
for node1, node2, datas in ret.edges(data=True):
s = ret[node1][node2]['superset']
s = inv_map[ np.argmax(s) ]
ret[node1][node2]['superset'] = s
return ret
```
```{python}
class ClusterGrainer():
def __init__(self, graph, n_clusters, preserve_roi=False, supermap = None):
self.preserve_roi = preserve_roi
if self.preserve_roi and (supermap is not None):
self.supermap = supermap
elif self.preserve_roi and (supermap is None):
raise ValueError("Param 'preserve_roi' is True but 'supermap' has not been defined")
self.G = graph
self.adj = nx.adjacency_matrix(self.G).todense()
self.nodes = np.array([n for n in self.G.nodes()])
self.clusterer = AgglomerativeClustering(n_clusters=n_clusters, affinity= 'precomputed',
connectivity =np.sign(self.adj), linkage='single')
# Statistics
degree = sorted([d for n, d in self.G.degree()], reverse=True)
avg_degree_con = nx.average_degree_connectivity(self.G)
avg_degree_con = np.array([i for k,i in avg_degree_con.items()])
fit = powerlaw.Fit(degree)
self.avg_deg = np.array( [np.mean(degree), np.std(degree)] )
self.avg_deg_con = np.array( [int(avg_degree_con.mean()), avg_degree_con.std()] )
self.con_distr_density, self.con_distr_bins = np.histogram(avg_degree_con, 200, density=True) # returns 2-tuple (density, edges)
self.power_law = np.array( [fit.alpha, fit.sigma] )
self.density = np.array(self.G.number_of_edges()/self.G.number_of_nodes()**2 )
def predict(self, metric_mat):
clusts = self.clusterer.fit_predict(metric_mat)
partition = { n : c for n, c in zip(self.nodes, clusts) }
return partition
def zip_graph(self, partitions, inplace=True):
if inplace:
if(self.preserve_roi):
self.G = my_induced_graph(partitions, self.G, self.supermap)
else:
self.G = induced_graph(partitions, self.G)
self.adj = nx.adjacency_matrix(self.G).todense()
self.nodes = np.array([n for n in self.G.nodes()])
else:
if self.preserve_roi:
return my_induced_graph(partitions, self.G, self.supermap)
else:
return induced_graph(partitions, self.G)
def _upd_stats(self, graph ):
degree = sorted([d for n, d in graph.degree()], reverse=True)
avg_degree_con = nx.average_degree_connectivity(graph)
avg_degree_con = np.array([i for k,i in avg_degree_con.items()])
fit = powerlaw.Fit(degree)
self.avg_deg = np.vstack( (self.avg_deg, [np.mean(degree), np.std(degree)]) )
self.avg_deg_con = np.vstack( (self.avg_deg_con, [int(avg_degree_con.mean()), avg_degree_con.std()] ))
temp_density, temp_bins = np.histogram(avg_degree_con, 200, density=True)
self.con_distr_density = np.vstack( (self.con_distr_density, temp_density) )
self.con_distr_bins = np.vstack( (self.con_distr_bins, temp_bins) )
self.power_law = np.vstack( (self.power_law, [fit.alpha, fit.sigma]) )
self.density = np.append( self.density, graph.number_of_edges()/graph.number_of_nodes()**2 )
def _set_clust(self, n_cl):
self.clusterer = AgglomerativeClustering(n_clusters=n_cl, affinity= 'precomputed',
connectivity =np.sign(self.adj), linkage='single')
def experiment(self, n_clusters, metric_mat, inplace=False, save=False):
iteration_number = 1;
for cl in tqdm(n_clusters):
self._set_clust(cl)
partitions = self.predict(metric_mat)
new_graph = self.zip_graph(partitions, inplace=inplace)
if save:
nx.readwrite.gpickle.write_gpickle(new_graph, f"graph_iter_{iteration_number}.gpickle")
iteration_number = iteration_number + 1
self._upd_stats(new_graph)
def plot_stats(self, sizes):
fig, ax = plt.subplots(2, 2, figsize=(12, 12))
ax = ax.flatten()
ax[0].set_xlabel('Size of the network [# of nodes]')
ax[0].set_ylabel('Coefficient of the power law')
ax[0].set_title('Evolution of the power law distribution')
ax[0].plot(sizes, self.power_law[:,0], 'o--', color='blue', label='Coef')
ax[0].fill_between(sizes, (self.power_law[:,0]+self.power_law[:,1]),
(self.power_law[:,0]-self.power_law[:,1]), alpha=0.3, label='Error', color='green' )
ax[0].legend()
ax[1].set_xlabel('Size of the network [# of nodes]')
ax[1].set_ylabel('Density #edges/(#nodes)^2')
ax[1].set_title('Evolution of the network density')
ax[1].plot(sizes, self.density, 'o--', color='blue')
ax[2].set_xlabel('Size of the network [# of nodes]')
ax[2].set_ylabel('Average degree')
ax[2].set_title('Evolution of the average degree')
ax[2].plot(sizes, self.avg_deg[:,0], 'o--', color='blue', label='Average')
ax[2].fill_between(sizes, (self.avg_deg[:,0]+self.avg_deg[:,1]),
(self.avg_deg[:,0]-self.avg_deg[:,1]), alpha=0.3, label='Error', color='green' )
ax[2].legend()
ax[3].set_xlabel('Size of the network [# of nodes]')
ax[3].set_ylabel('Average degree connectivity')
ax[3].set_title('Evolution of the average degree connectivity')
ax[3].plot(sizes, self.avg_deg_con[:,0], 'o--', color='blue', label='Average')
ax[3].fill_between(sizes, (self.avg_deg_con[:,0]+self.avg_deg_con[:,1]),
(self.avg_deg_con[:,0]-self.avg_deg_con[:,1]), alpha=0.3, label='Error', color='green' )
ax[3].legend()
plt.show()
```
```{python}
g = graph.copy()
# following correctly raises error
# Grainer = ClusterGrainer(g, 10000, preserve_roi=True, supermap=None)
# following correctly works
Grainer = ClusterGrainer(g, 10000, preserve_roi=True, supermap=roi_supersets)
```
### Upload metric from pickle
```{python}
clusters = np.arange(20000, 0, -500)
weight_metric = np.load('exported-traced-adjacencies/pagerank_computed.npy', allow_pickle=True)
```
```{python}
metric = 1/weight_metric
```
```{python}
if not PATIENCE:
r_clusters = clusters[1:4]
else:
r_clusters = clusters
Grainer.experiment(r_clusters, metric, save=True)
sizes = np.insert(r_clusters, 0, graph.number_of_nodes())
```
```{python}
Grainer.plot_stats(sizes)
```
```{python}
len(sizes)
```
```{python}
con_distr_bins = Grainer.con_distr_bins
con_distr_density = Grainer.con_distr_density
```
```{python}
#con_distr_bins = np.load('bins.npy')
#con_distr_density = np.load('density.npy')
```
```{python}
default_bins = Grainer.con_distr_bins[0]
default_density = Grainer.con_distr_density[0]
default_center = (default_bins[:-1] + default_bins[1:]) / 2
def_width = (default_bins[2] - default_bins[1])
fig, ax = plt.subplots( figsize=(12,8))
ax.bar(default_center, default_density, width=def_width, alpha=1, label=f'{21733} neurons')
indexes = [5, 20, 30]
for i in indexes:
# current values
bins = Grainer.con_distr_bins[i]
hist = Grainer.con_distr_density[i]
width = (bins[1] - bins[0])
center = (bins[:-1] + bins[1:]) / 2
# ax.bar(center, hist, align='center', width=width)
ax.bar(center, hist, width=width, alpha=0.6, label=f'{sizes[i]} neurons')
# legend
#ax.legend(['original', f'it. {i}', f'it {i-1}'])
ax.legend()
ax.set_title("Average degree connectivity distribution")
ax.set_ylabel("Probability")
ax.set_xlabel("Average degree connectivity")
ax.set_xlim(0, 1500)
plt.show()
```
```{python}
from matplotlib.animation import FuncAnimation
class Animate:
def __init__(self, bins, distribution, clusters):
self.fig , self.ax = plt.subplots( figsize=(12,8))
self.ax.set_xlabel('Average degree connectivity', fontsize=16)
self.ax.set_title("Average degree connectivity distribution", fontsize=20)
self.ax.set_ylabel('Probability', fontsize=16)
#self.ax.set_ylim([0, 0.04])#np.max(distribution)])
# Parameters
self.clusters = clusters
self.distribution = distribution
self.bins = bins
self.width = (bins[:,1] - bins[:,0])
self.center = (bins[:,:-1]+bins[:,1:])/2
self.im = self.ax.bar(self.center[0,:], self.distribution[0,:], width=self.width[0],
label='Original: 21733', color='royalblue')
self.moving = self.ax.bar(self.center[1,:], self.distribution[1,:], width=self.width[1], alpha=0.7,
label=f'Number of neurons: {self.clusters[0]}', color='limegreen')
self.legend = self.ax.legend()
def _update(self, i):
if i<len(self.distribution)-1:
curr = self.distribution[i+1]
for s, c, cent in zip(self.moving, curr, self.center[i+1]):
s.set_height(c)
s.set_width(self.width[i+1])
s.set_x(cent)
self.legend.texts[1].set_text(f'Number of neurons: {self.clusters[i]}')
self.ax.set_ylim([0, np.max(curr)+np.max(curr)/10])
else:
curr = self.distribution[-1]
for s, c, cent in zip(self.moving, curr, self.center[-1]):
s.set_height(c)
s.set_width(self.width[-1])
s.set_x(cent)
self.legend.texts[1].set_text(f'Number of neurons: {self.clusters[-1]}')
def sys_anim(self, interval=100):
self.anim = FuncAnimation(self.fig, self._update, frames=len(self.clusters)+2, interval=interval)
self.anim.save('prova.gif')
```
```{python}
anim = Animate(con_distr_bins, con_distr_density, r_clusters)
anim.sys_anim(interval=800)
```
```{python}
names = ['GNG', 'PENP', 'VMNP', 'CX', 'LX', 'AL', 'MB', 'INP', 'VLNP', 'OL', 'SNP', 'LH']
links = [('GNG', 'PENP'), ('PENP', 'VMNP'), ('PENP', 'CX'), ('PENP', 'LX'), ('VMNP', 'CX'),
('VMNP', 'LX'), ('CX', 'LX'), ('CX', 'AL'), ('LX', 'AL'), ('AL', 'INP'),
('AL', 'MB'), ('INP', 'VLNP'), ('VLNP', 'OL'), ('MB', 'SNP'), ('SNP', 'LH')]
```
```{python}
high_lvl_brain = nx.Graph()
high_lvl_brain.add_nodes_from(names)
high_lvl_brain.add_edges_from(links)
high_lvl_brain_ig = ig.Graph.from_networkx(high_lvl_brain)
```
```{python}
colors = ig.drawing.colors.known_colors
colors = list(colors.keys())
#print(colors)
```
```{python}
#set label to be names of nx graph nodes
high_lvl_brain_ig.vs["label"] = high_lvl_brain_ig.vs["_nx_name"]
visual_style = {}
#node size
visual_style["vertex_size"] = 20
#node color
c = [0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0]
n_names = np.array(['deep sky blue', 'magenta4'])
visual_style["vertex_color"] = n_names[c]
#node label
visual_style["vertex_label"] = high_lvl_brain_ig.vs["label"]
#node label color
visual_style["vertex_label_color"] = "black"
#node label size
visual_style["vertex_label_size"] = 15
#edge thickness
visual_style["edge_width"] = 2
#bounding box
visual_style["bbox"] = (500, 500)
#margin
visual_style["margin"] = 20
ig.plot(high_lvl_brain_ig, "high_lvl_brain.pdf", **visual_style, layout="kk")
```
## Outlier analysis
```{python}
out_size = 3000
```
```{python}
Grainer._set_clust(out_size)
partitions = Grainer.predict(metric)
out_graph = Grainer.zip_graph(partitions, inplace=False)
```
```{python}
degree = np.array( [ d for n, d in out_graph.degree()] )
density_deg, bins_deg = np.histogram(degree, 200)
avg_degree_con = nx.average_degree_connectivity(out_graph)
avg_degree_con = np.array([i for k,i in avg_degree_con.items()])
density_con, bins_con = np.histogram(avg_degree_con, 200, density=True)
```
```{python}
fig, ax = plt.subplots(1, 2, figsize=(15, 6))
ax[0].loglog()
ax[0].plot( (bins_deg[:-1]+ bins_deg[1:])/2, density_deg, 'o')
ax[0].plot( 30000000000000*np.arange(10, 1000).astype(float)**(-5), 'r--', label = 'power law coefficient: 5' )
ax[0].set_ylim(0.5, 500)
ax[0].set_xlim(10, 4000)
ax[0].set_title('Degree distribution')
ax[0].set_xlabel('Degree')
ax[0].set_ylabel('Frequency')
ax[0].legend()
ax[1].bar( (bins_con[:-1]+bins_con[1:])/2, density_con, width=bins_con[1]-bins_con[0])
ax[1].set_title('Average degree connectivity distribution')
ax[1].set_xlabel('Average degree connectivity')
ax[1].set_ylabel('Probability')
plt.show()
```
# To do list
1. ✔️ list brain regions to create different $12$ theoretical communities;
1. ✔️ understand what the $12$ regions does;
1. 🟥 Understand brain section of neurons;
1. ✔️ Check degree distribution is power law;
1. ✔️ netorkx documentation (algorithms in particular);
1. ◻️ Local connectivity measure;
1. ✔️ Colour adjacency matrix based on connection supergroup **FRANK**;
1. ✔️ Redefine ROI by taking connection with highest weight only **FRANK**;
1. ✔️ Define coarse graining procedure **BALLA**;
1. ◻️ Curare il report up to now;
1. ✔️ Better define coarse graining metrics;
1. ◻️ Community detection (naive and after coarse graining);
1. ◻️ Betweenness (especially for multiple ROI synapses), centrality, small world characteristics **FRANK**;
1. ✔️Distance from random network;
1. ◻️ robustness to cuts. In particular it may be interesting to attack outer regions of the brain, the more easily damaged. **BALLA**. The **common connectome constraint paper** already say something about it;
1. ◻️ Visualization of networks and parameters;
1. ◻️ Aggregate by ROI, modification with coarse graining;
1. ◻️ Book an appointment to discuss state of the work
###### Problems
~In point (3), we have that the same synapse (same link between two neurons, as we've defined it here) may belong to more than one region. We could add only the one with the highest weight, but often is not possible. Random?~ Fixed by taking the highest-weight only connection.
## Average measures
#### Degree
```{python}
degree = np.array([ d for n, d in graph.degree()])
degree_mean = int(degree.mean())
print(f"Degree mean: {degree_mean}")
y, x = np.histogram(degree, bins=100)
x = (x[1:]+x[:-1])/2
# plot degree bins
plt.loglog()
plt.plot(x, y, 'ro')
plt.xlabel('Log Degree log(k)')
plt.ylabel('Log Frequency ')
plt.title('Degree distribution')
plt.grid()
plt.show()
```
#### Degree connectivity
The *average degree connectivity* is the average nearest neighbor degree of nodes with degree k.
```{python}
avg_degree_connectivity = nx.average_degree_connectivity(graph)
avg_degree_connectivity = np.array([i for k,i in avg_degree_connectivity.items()])
print(f"Global average degree connectivity value: {int(avg_degree_connectivity.mean())}")
plt.hist(avg_degree_connectivity, bins=200)
plt.grid()
plt.title("Average degree connectivity distribution")
plt.xlabel("Average degree connectivity for degree k")
plt.show()
```
```{python}
avg_degree_connectivity = nx.average_degree_connectivity(graph)
avg_degree_connectivity = np.array([i for k,i in avg_degree_connectivity.items()])
max_avg = np.max(avg_degree_connectivity)
print(f"Global average degree connectivity value: {int(avg_degree_connectivity.mean())}")
hist, bins = np.histogram(avg_degree_connectivity, bins=200)
#width = 0.7 * (bins[1] - bins[0])
width = 1 * (bins[1] - bins[0])
center = (bins[:-1] + bins[1:]) / 2
plt.bar(center, hist, align='center', width=width)
plt.show()
```
#### Average clustering coefficient
Time saver: avg_clustering_coeff = 0.31370364316752
```{python}
if PATIENCE:
start_time = time.time()
avg_clustering_coeff = nx.average_clustering(graph)
print(f"Average clustering coefficient: {avg_clustering_coeff}")
end_time = time.time()
print("Total time: {:.2f} seconds".format((end_time - start_time)))
```
#### Average shortest path length (NOTE: veeeery long)
```{python}
if PATIENCE:
# sanity check
if nx.is_connected(graph):
start_time = time.time()
avg_shortest_path = nx.average_shortest_path_length(graph)
print(avg_shortest_path)
end_time = time.time()
print("Total time: {:.2f} seconds".format((end_time - start_time)))
else:
print("Graph is not connected.")
```
```{python}
```