-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhubconf.py
75 lines (58 loc) · 3.87 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
dependencies = ["torch", "timm"]
import inspect
import torch
import timm
# fmt: off
# ------------------------------------------------------------------------------------------------
# Our main language-guided SSL models:
def lgsimclr(): return _load_model("AADlHQyayNwjfSiYqumOf3VAa")
def lgsimsiam(): return _load_model("AAAETt_6yjLLO9_vqiLOPw1-a")
def lgslip(): return _load_model("AACDoCE9xfzbi8nQwffd0pe7a")
# Our LG-SimCLR model with variable batch sizes.
def lgsimclr_bs_256(): return _load_model("AADjYsCNy7mT0J_XboDmjUmAa")
def lgsimclr_bs_1024(): return _load_model("AADjRzzptn8g-oJUcdTi5CUca")
def lgsimclr_bs_2048(): return _load_model("AACjJMgHMRqOEPw-lQ2QtSMka")
lgsimclr_bs_512 = lgsimclr
# ------------------------------------------------------------------------------------------------
# Visual baselines: ones that use image-image contrastive learning with augmentations.
def visual_baseline_simsiam(): return _load_model("AAAZPvJNoulGFwujA4gUroyNa")
def visual_baseline_nnclr(): return _load_model("AACnmKI8H-jBDVfmIn02183-a")
def visual_baseline_simclr(): return _load_model("AADke3kbdVXq5On42j6t9PWqa")
# CLIP baselines: ones that use image-text contrastive learning.
def clip_baseline(): return _load_model("AADcT7i8tO9vckWb0AX1v9rYa")
def clip_baseline_nns(): return _load_model("AADWGD0bprAVVQdMkeQTe-N8a")
def clip_baseline_sbert_as_text_enc(): return _load_model("AABfJIHNWmXWKiqEgvtRcgtua")
# SLIP baseline: combines image-image and image-text contrastive learning objectives.
def slip_baseline(): return _load_model("AACKJlso6EfHH5nS9bbsrEZha")
# SimCLR baseline with variable batch sizes.
def simclr_bs_256(): return _load_model("AAB9PEHrzJPYSi0HfsmqHKIpa")
def simclr_bs_1024(): return _load_model("AAD20wcCgXkFN-QKInsbu-iIa")
def simclr_bs_2048(): return _load_model("AAC6Mind8XO9GwFK2-2QKZvpa")
# ------------------------------------------------------------------------------------------------
# Extra LG-SimCLR models: trained with different sampling spaces in RedCaos (SBERT encoder).
def redcaps_subsample_subreddit(): return _load_model("AAD32C8YahqHUXtvbFLZnGHea")
def redcaps_subsample_subreddityear(): return _load_model("AABb5Z1q10qfy_PHK-sH_DhWa")
def redcaps_subsample_year(): return _load_model("AADHjc_6JkimJ0ua5dL4RB3Ya")
# Extra LG-SimCLR models: with nearest neighbors sampled using pre-trained visual encoders.
def sample_space_vis_clip(): return _load_model("AAArta3X3DfW7Lr-1yQh5-o7a")
def sample_space_vis_imagenet(): return _load_model("AACf5f0TRnkpwddzizFxrp_Ya")
def sample_space_vis_simclr(): return _load_model("AADLvWEQfCb5QcuNSNeemM5Pa")
# Extra LG-SimCLR models: with nearest neighbors sampled using pre-trained language encoders.
def sample_space_lang_clip_vitb32(): return _load_model("AABTtKYcCyGAe_gx7HGiITK_a")
def sample_space_lang_fasttext_bow(): return _load_model("AABlIN293fJ9RYpduHwbtnzua")
def sample_space_lang_minilm(): return _load_model("AAAe7NxKJ7Ut_ESFA1u7C-bMa")
def sample_space_lang_our_clip(): return _load_model("AABom01m4OMqb0LmP5mBlNfFa")
# ------------------------------------------------------------------------------------------------
# fmt: on
def _load_model(dropbox_id: str):
base_url = "https://www.dropbox.com/sh/me6nyiewlux1yh8"
# Dark magic to get name of the function that called this function.
# This line determines the name of model in model zoo.
model_name = inspect.getouterframes(inspect.currentframe())[1][3]
model = timm.create_model("resnet50", num_classes=0)
model.load_state_dict(
torch.hub.load_state_dict_from_url(
f"{base_url}/{dropbox_id}/{model_name}.ckpt?dl=1"
)
)
return model