Skip to content
View mbarbag's full-sized avatar

Organizations

@wtm-medellin

Block or report mbarbag

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse

Pinned Loading

  1. e2e-data-engineering-zoomcamp-aws e2e-data-engineering-zoomcamp-aws Public

    Learning portfolio of modern data engineering practices using AWS (pipelines, Airflow orchestration, warehouses, Docker, Postgres, dbt, etc.).

    Jupyter Notebook

  2. nobel-prize-api-data-engineering nobel-prize-api-data-engineering Public

    API data extraction and normalization pipeline for Nobel Prize data. Transforms nested JSON to pandas DataFrames using JSONPath-style navigation and relationship modeling.

    Jupyter Notebook

  3. olympics-dataset-cleaning-analysis olympics-dataset-cleaning-analysis Public

    Comprehensive data cleaning pipeline for Olympic athletes' biographical and competition data (1896-2022). Transforms raw olympedia.org data into analysis-ready datasets.

    Jupyter Notebook

  4. sql-databricks-demand-planning-analysis sql-databricks-demand-planning-analysis Public

    Proyecto final de SQL: Desarrollo de reportes comerciales y KPIs para el área de Demand Planning utilizando Databricks. Análisis multidimensional de ventas con segmentación por categorías, producto…

  5. sql-databricks-health-analytics sql-databricks-health-analytics Public

    Ejercicios de SQL realizados en Databricks utilizando el dataset de salud pública de la Ciudad de Rosario (Santa Fe, Argentina). Incluye análisis de pacientes, hospitales, diagnósticos, sectores e …

  6. pandas-comprehensive-tutorial pandas-comprehensive-tutorial Public

    A comprehensive pandas tutorial covering data manipulation, filtering, merging, and advanced operations with real datasets and performance best practices.

    Jupyter Notebook