diff --git a/python/src/GeneralLinearModelAlgorithm_doc.i.in b/python/src/GeneralLinearModelAlgorithm_doc.i.in index 33f2ce5c36c..607ce029696 100644 --- a/python/src/GeneralLinearModelAlgorithm_doc.i.in +++ b/python/src/GeneralLinearModelAlgorithm_doc.i.in @@ -51,8 +51,7 @@ where: with :math:`\mu_\ell(\vect{x}) = \sum_{j=1}^{n_\ell} \beta_j^\ell \varphi_j^\ell(\vect{x})` and :math:`\varphi_j^\ell: \Rset^\inputDim \rightarrow \Rset` the trend functions. - -:math:`\vect{W}` is a Gaussian process of dimension :math:`\outputDim` with zero mean and covariance function +The Gaussian process :math:`\vect{W}` is of dimension :math:`\outputDim` with zero mean and covariance function :math:`C = C(\vect{\theta}, \vect{\sigma}, \mat{R}, \vect{\lambda})` (see :class:`~openturns.CovarianceModel` for the notations). @@ -81,8 +80,7 @@ The *GeneralLinearModelAlgorithm* class estimates the coefficients :math:`\beta_ where :math:`\vect{p}` is the vector of parameters of the covariance model (a subset of :math:`\vect{\theta}, \vect{\sigma}, \mat{R}, \vect{\lambda}`) that has been declared as *active* (by default, the full vectors :math:`\vect{\theta}` and :math:`\vect{\sigma}`). - -The estimation is done by maximizing the *reduced* log-likelihood of the model, see its expression below. +The estimation is done by maximizing the *reduced* log-likelihood of the model (see its expression below). **Estimation of the parameters** :math:`\beta_j^\ell` and :math:`\vect{p}`