-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathplotmaps.py
125 lines (85 loc) · 3.24 KB
/
plotmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 7 16:36:29 2019
@author: michaelboles
"""
# set up working directory
import os
import pandas as pd
os.chdir('/Users/michaelboles/Michael/Coding/2019/Realestate') # Mac
#os.chdir('C:\\Users\\bolesmi\\Lam\\Coding\\Python\\2019\\Realestate') # PC
### PRICE PLOTS ###
### Bay overview ###
# import data
data_bay = pd.read_csv('./Data/listings/data_bay.csv')
shapefile = r'./shapefiles/Bay cities/ba_cities.shp'
# calculate quintiles
from calculatequintiles import price_quintiles
pricequintiles_bay = price_quintiles(data_bay)
# plot data
from cartoplotfunctions import cartoplot_bay_price
mapsize = 30
cartoplot_bay_price(data_bay, mapsize, pricequintiles_bay, shapefile)
### San Francisco ###
# import data
data_sf = pd.read_csv('./data/data_sf.csv')
# calculate quintiles
pricequintiles_sf = price_quintiles(data_sf)
# plot data
from cartoplotfunctions import cartoplot_sf_price
shapefile_sf = r'./shapefiles/SF neighborhoods/geo_export_9b5217d9-9101-418b-8805-7dd14339f103.shp'
mapsize = 15
cartoplot_sf_price(data_sf, mapsize, pricequintiles_sf, shapefile_sf)
### East Bay ###
# import data
data_eastbay = pd.read_csv('./data/data_eastbay.csv')
# calculate quintiles
pricequintiles_eastbay = price_quintiles(data_eastbay)
# plot data
from cartoplotfunctions import cartoplot_eastbay_price
mapsize = 15
cartoplot_eastbay_price(data_eastbay, mapsize, pricequintiles_eastbay, shapefile)
### Peninsula ###
# import data
data_peninsula = pd.read_csv('./data/data_peninsula.csv')
# calculate quintiles
pricequintiles_peninsula = price_quintiles(data_peninsula)
# plot data
from cartoplotfunctions import cartoplot_peninsula_price
mapsize = 15
cartoplot_peninsula_price(data_peninsula, mapsize, pricequintiles_peninsula, shapefile)
### South Bay ###
# import data
data_southbay = pd.read_csv('./data/data_southbay.csv')
# calculate quintiles
pricequintiles_southbay = price_quintiles(data_southbay)
# plot data
from cartoplotfunctions import cartoplot_southbay_price
mapsize = 15
cartoplot_southbay_price(data_southbay, mapsize, pricequintiles_southbay, shapefile)
### COMMUTE PLOT ###
# import data
#data_bay_withtimes = pd.read_csv('./data/listings/data_bay_withtimes.csv')
#data_bay_withtimes['Min commute'] = data_bay_withtimes[['SF time', 'PA time']].min(axis=1)
# get shapefile, file containing commute, school data by zipcode
shapefile = r'./shapefiles/Bay Zips/ZIPCODE.shp'
data_zipcodes = pd.read_csv('./data/data by zipcode/data_zipcodes.csv')
# plot data
from cartoplotfunctions import cartoplot_commute
mapsize = 15
cartoplot_commute(mapsize, shapefile, data_zipcodes)
### SCHOOL PLOT ###
# plot data
from cartoplotfunctions import cartoplot_schools
cartoplot_schools(mapsize, shapefile, data_zipcodes)
### PRICE DIFFERENCE PLOT ###
# import data
shapefile = r'./shapefiles/Bay cities/ba_cities.shp'
data_all_price_predictions = pd.read_csv('./data/listings/data_all_price_predictions.csv')
# calculate quintiles
from calculatequintiles import price_diff_quintiles
price_diff_quintiles = price_diff_quintiles(data_all_price_predictions)
# plot data
from cartoplotfunctions import cartoplot_bay_price_predictions
mapsize = 30
cartoplot_bay_price_predictions(data_all_price_predictions, mapsize, price_diff_quintiles, shapefile)