-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcryoem.py
executable file
·271 lines (216 loc) · 9.09 KB
/
cryoem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as n
from geom import gencoords
import scipy.ndimage.interpolation as spinterp
import scipy.ndimage.filters as spfilter
import pyximport; pyximport.install(setup_args={"include_dirs":n.get_include()},reload_support=True)
import sparsemul
def compute_density_moments(M,mu=None):
N = M.shape[0]
absM = (M**2).reshape((N**3,1))
absM /= n.sum(absM)
coords = gencoords(N,3).reshape((N**3,3))
if mu == None:
wcoords = coords.reshape((N**3,3)) * absM
mu = n.sum(wcoords,axis=0).reshape((1,3))
wccoords = n.sqrt(absM/N**3) * (coords - mu)
covar = n.dot(wccoords.T,wccoords)
return mu, covar
def rotate_density(M,R,t=None, upsamp=1.0):
assert len(M.shape) == 3
N = M.shape[0]
Nup = int(n.round(N*upsamp))
# print "Upsampling by", upsamp, "to", Nup, "^3"
coords = gencoords(Nup,3).reshape((Nup**3,3)) / float(upsamp)
if t is None:
interp_coords = n.transpose(n.dot(coords, R.T)).reshape((3,Nup,Nup,Nup)) + N/2
else:
interp_coords = n.transpose(n.dot(coords, R.T) + t).reshape((3,Nup,Nup,Nup)) + N/2
out = spinterp.map_coordinates(M,interp_coords,order=1)
return out
def align_density(M, upsamp=1.0):
assert len(M.shape) == 3
(mu,covar) = compute_density_moments(M)
(w,V) = n.linalg.eigh(covar)
idx = w.argsort()
w = w[idx]
V = V[:,idx]
if n.linalg.det(V) < 0:
# ensure we have a valid rotation
V[:,0] *= -1
out = rotate_density(M,V,mu,upsamp)
# (mu,covar) = compute_density_moments(out)
return out, V
def rotational_average(M,maxRadius=None, doexpand=False, normalize=True, return_cnt=False):
N = M.shape[0]
D = len(M.shape)
assert D >= 2, 'Cannot rotationally average a 1D array'
pts = gencoords(N,D).reshape((N**D,D))
r = n.sqrt(n.sum(pts**2,axis=1)).reshape(M.shape)
ir = n.require(n.floor(r),dtype='uint32')
f = r - ir
if maxRadius is None:
maxRadius = n.ceil(n.sqrt(D)*N/D)
if maxRadius < n.max(ir)+2:
valid_ir = ir+1 < maxRadius
ir = ir[valid_ir]
f = f[valid_ir]
M = M[valid_ir]
if n.iscomplexobj(M):
raps = 1.0j*n.bincount(ir, weights=(1-f)*M.imag, minlength=maxRadius) + \
n.bincount(ir+1, weights=f*M.imag, minlength=maxRadius)
raps += n.bincount(ir, weights=(1-f)*M.real, minlength=maxRadius) + \
n.bincount(ir+1, weights=f*M.real, minlength=maxRadius)
else:
raps = n.bincount(ir, weights=(1-f)*M, minlength=maxRadius) + \
n.bincount(ir+1, weights=f*M, minlength=maxRadius)
raps = raps[0:maxRadius]
if normalize or return_cnt:
cnt = n.bincount(ir, weights=(1-f), minlength=maxRadius) + \
n.bincount(ir+1, weights=f, minlength=maxRadius)
cnt = cnt[0:maxRadius]
if normalize:
raps[cnt <= 0] = 0
raps[cnt > 0] /= cnt[cnt > 0]
if doexpand:
raps = rotational_expand(raps,N,D)
if return_cnt:
return raps, cnt
else:
return raps
def rotational_expand(vals,N,D,interp_order=1):
interp_coords = n.sqrt(n.sum(gencoords(N,D).reshape((N**D,D))**2,axis=1)).reshape((1,) + D*(N,))
if n.iscomplexobj(vals):
rotexp = 1.0j*spinterp.map_coordinates(vals.imag, interp_coords,
order=interp_order, mode='nearest')
rotexp += spinterp.map_coordinates(vals.real, interp_coords,
order=interp_order, mode='nearest')
else:
rotexp = spinterp.map_coordinates(vals, interp_coords,
order=interp_order, mode='nearest')
return rotexp
def resize_ndarray(D,nsz,axes):
zfs = tuple([float(nsz[i])/float(D.shape[i]) if i in axes else 1 \
for i in range(len(nsz))])
sigmas = tuple([0.66/zfs[i] if i in axes else 0 \
for i in range(len(nsz))])
# print zfs, sigmas, D.shape
# print "blurring...", ; sys.stdout.flush()
blurD = spfilter.gaussian_filter(D,sigma=sigmas,order=0,mode='constant')
# print "zooming...", ; sys.stdout.flush()
return spinterp.zoom(blurD,zfs,order=0)
def compute_fsc(VF1,VF2,maxrad,width=1.0,thresholds = [0.143,0.5]):
assert VF1.shape == VF2.shape
N = VF1.shape[0]
r = n.sqrt(n.sum(gencoords(N,3).reshape((N,N,N,3))**2,axis=3))
prev_rad = -n.inf
fsc = []
rads = []
resInd = len(thresholds)*[None]
for i,rad in enumerate(n.arange(1.5,maxrad*N/2.0,width)):
cxyz = n.logical_and(r >= prev_rad,r < rad)
cF1 = VF1[cxyz]
cF2 = VF2[cxyz]
if len(cF1) == 0:
break
cCorr = n.vdot(cF1,cF2) / n.sqrt(n.vdot(cF1,cF1)*n.vdot(cF2,cF2))
for j,thr in enumerate(thresholds):
if cCorr < thr and resInd[j] is None:
resInd[j] = i
fsc.append(cCorr.real)
rads.append(rad/(N/2.0))
prev_rad = rad
fsc = n.array(fsc)
rads = n.array(rads)
resolutions = []
for rI,thr in zip(resInd,thresholds):
if rI is None:
resolutions.append(rads[-1])
elif rI == 0:
resolutions.append(n.inf)
else:
x = (thr - fsc[rI])/(fsc[rI-1] - fsc[rI])
resolutions.append(x*rads[rI-1] + (1-x)*rads[rI])
return rads, fsc, thresholds, resolutions
# So the key is to make sure that the image is zero at the nyquist frequency (index n/2)
# The interpolation idea is to assume that the actual function f(x,y) is band-limited i.e.
# made up of exactly the frequency components in the FFT. Since we are interpolating in frequency space,
# The assumption is that in frequency space the signal F(wx,wy) is band-limited.
# This means that it's fourier transform should have components less than the nyquist frequency.
# But the fourier transform of F(wx,wy) is ~f(x,y) since FFT and iFFT are same. So f(x,y) must be nonzero at the nyquist frequency (and preferrably even less than that) which means in image space, the n/2 row and n/2 column (and n/2 page).
# since the image will be zero at the edges once some windowing (circular or hamming etc) is applied,
# we can just fftshift the image since translations do not change the FFT except by phase. This makes the nyquist components
# zero and everything is fine and dandy. Even linear iterpolation works then, except it leaves ghosting.
def getslices (V, SLOP, res=None):
vV = V.reshape((-1,))
assert vV.shape[0] == SLOP.shape[1]
if res is None:
res = n.zeros(SLOP.shape[0],dtype=vV.dtype)
else:
assert res.shape[0] == SLOP.shape[0]
assert len(res.shape) == 1 or res.shape[1] == 1
assert res.dtype == vV.dtype
res[:] = 0
if n.iscomplexobj(vV):
sparsemul.spdot(SLOP, vV.real, res.real)
sparsemul.spdot(SLOP, vV.imag, res.imag)
else:
sparsemul.spdot(SLOP, vV, res)
return res
# 3D Densities
# ===============================================================================================
def window (v, func='hanning', params=None):
""" applies a windowing function to the 3D volume v (inplace, as reference) """
N = v.shape[0]
D = v.ndim
if any( [ d != N for d in list(v.shape) ] ) or D != 3:
raise Exception("Error: Volume is not Cube.")
def apply_seperable_window (v, w):
v *= n.reshape(w,(-1,1,1))
v *= n.reshape(w,(1,-1,1))
v *= n.reshape(w,(1,1,-1))
if func=="hanning":
w = n.hanning(N)
apply_seperable_window(v,w)
elif func=='hamming':
w = n.hamming(N)
apply_seperable_window(v,w)
elif func=='gaussian':
raise Exception('Unimplimented')
elif func=='circle':
c = gencoords(N,3)
if params==None:
r = N/2 -1
else:
r = params[0]*(N/2*1)
v *= (n.sum(c**2,1) < ( r ** 2 ) ).reshape((N,N,N))
elif func=='box':
v[:,0,0] = 0.0
v[0,:,0] = 0.0
v[0,0,:] = 0.0
else:
raise Exception("Error: Window Type Not Supported")
def generate_phantom_density(N,window,sigma,num_blobs,seed=None):
if seed is not None:
n.random.seed(seed)
M = n.zeros((N,N,N),dtype=n.float32)
coords = gencoords(N,3).reshape((N**3,3))
inside_window = n.sum(coords**2,axis=1).reshape((N,N,N)) < window**2
curr_c = n.array([0.0, 0.0 ,0.0])
curr_n = 0
while curr_n < num_blobs:
csigma = sigma*n.exp(0.25*n.random.randn())
radM = n.sum((coords - curr_c.reshape((1,3)))**2,axis=1).reshape((N,N,N))
inside = n.logical_and(radM < (3*csigma)**2,inside_window)
# M[inside] = 1
M[inside] += n.exp(-0.5*(radM[inside]/csigma**2))
curr_n += 1
curr_dir = n.random.randn(3)
curr_dir /= n.sum(curr_dir**2)
curr_c += 2.0*csigma*curr_dir
curr_w = n.sqrt(n.sum(curr_c**2))
while curr_w > window:
curr_n_dir = curr_c/curr_w
curr_r_dir = (2*n.dot(curr_dir,curr_n_dir))*curr_n_dir - curr_dir
curr_c = curr_n_dir + (curr_w - window)*curr_r_dir
curr_w = n.sqrt(n.sum(curr_c**2))
return M