-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgeom.py
executable file
·165 lines (132 loc) · 4.75 KB
/
geom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as n
from util import memoize
def rotmat2D (theta):
return n.array([[n.cos(theta), -n.sin(theta)],
[n.sin(theta), n.cos(theta)]])
def rotmat3D_to_quat(R):
qw = n.sqrt(1 + R[0,0] + R[1,1] + R[2,2]) / 2.0
qw4 = 4.0*qw
qx = (R[2,1] - R[1,2])/qw4
qy = (R[0,2] - R[2,0])/qw4
qz = (R[1,0] - R[0,1])/qw4
qs = n.array([qw,qx,qy,qz])
return qs
def rotmat3D_quat(q):
qw = q[0]
qx = q[1]
qy = q[2]
qz = q[3]
qx2 = qx**2
qy2 = qy**2
qz2 = qz**2
qxqw = qx*qw
qxqy = qx*qy
qxqz = qx*qz
qyqw = qy*qw
qyqz = qy*qz
qzqw = qz*qw
Rs = n.array([[ 1 - 2*qy2 - 2*qz2, 2*qxqy - 2*qzqw, 2*qxqz + 2*qyqw], \
[ 2*qxqy + 2*qzqw, 1 - 2*qx2 - 2*qz2, 2*qyqz - 2*qxqw], \
[ 2*qxqz - 2*qyqw, 2*qyqz + 2*qxqw, 1 - 2*qx2 - 2*qy2]])
return Rs
def rotmat3D_EA (phi, theta, psi=None):
"""
Generates a rotation matrix from Z-Y-Z Euler angles. This rotation matrix
maps from image coordinates (x,y,0) to view coordinates and should be
consistent with JLRs code.
"""
R_z = n.array([[ n.cos(phi), -n.sin(phi), 0],
[ n.sin(phi), n.cos(phi), 0],
[ 0, 0, 1]])
R_y = n.array([[ n.cos(theta), 0, n.sin(theta)],
[0, 1, 0],
[-n.sin(theta), 0, n.cos(theta)]])
R = n.dot(R_z, R_y)
if psi is not None and psi != 0:
R_in = n.array([[ n.cos(psi), -n.sin(psi), 0],
[ n.sin(psi), n.cos(psi), 0],
[ 0, 0, 1]])
R = n.dot(R, R_in);
return R
def rotmat3D_dir(projdir, psi=None):
d = projdir.reshape((3,))/n.linalg.norm(projdir)
vdir = n.array([0,0,1],dtype=projdir.dtype)
rotax = n.cross(vdir,d)
rotaxnorm = n.linalg.norm(rotax)
if rotaxnorm > 1e-16:
rang = n.arctan2(rotaxnorm,d[2])
rotax /= rotaxnorm
x,y,z = rotax[0],rotax[1],rotax[2]
c, s = n.cos(rang), n.sin(rang)
C = 1 - c
R = n.array([[ x*x*C + c , x*y*C - z*s, x*z*C + y*s ],
[ y*x*C + z*s, y*y*C + c , y*z*C - x*s ],
[ z*x*C - y*s, z*y*C + x*s, z*z*C + c ]],
dtype=projdir.dtype)
else:
R = n.identity(3, dtype=projdir.dtype)
if d[2] < 0:
R[1,1] = -1
R[2,2] = -1
if psi is not None and psi != 0:
R_in = n.array([[ n.cos(psi), -n.sin(psi), 0],
[ n.sin(psi), n.cos(psi), 0],
[ 0, 0, 1]])
R = n.dot(R, R_in);
return R
def rotmat3D_expmap(e):
theta = n.linalg.norm(e)
if theta < 1e-16:
return n.identity(3, dtype=e.dtype)
k = e/theta
K = n.array([[ 0,-k[2], k[1]],\
[ k[2], 0,-k[0]],\
[-k[1], k[0], 0]],dtype=e.dtype)
return n.identity(3, dtype=e.dtype) + n.sin(theta)*K + (1-n.cos(theta))*n.dot(K,K)
def genDir(EAs):
"""
Generate the projection direction given the euler angles. Since the image
is in the x-y plane, the projection direction is given by R(EA)*z where
z = (0,0,1)
"""
p = n.array([rotmat3D_EA(*EA)[:,2] for EA in EAs])
return p
def genEA(p):
"""
Generates euler angles from a vector direction
p is a column vector in the direction that the new x-axis should point
returns tuple (phi, theta, psi) with psi=0
"""
assert p.shape[-1] == 3
p = n.asarray(p).reshape((-1,3))
theta = n.arctan2(n.linalg.norm(p[:,0:2],axis=1),p[:,2]).reshape((-1,1))
phi = n.arctan2(p[:,1],p[:,0]).reshape((-1,1))
return n.hstack([phi,theta,n.zeros_like(theta)])
@memoize
def gencoords_base (N,d):
x = n.arange(-N/2,N/2,dtype=n.float32)
c = x.copy()
for i in range(1,d):
c = n.column_stack([n.repeat(c, N, axis=0), n.tile(x, N**i)])
return c
@memoize
def gencoords (N,d,rad=None,truncmask=False,trunctype='circ'):
""" generate coordinates of all points in an NxN..xN grid with d dimensions
coords in each dimension are [-N/2, N/2)
N should be even"""
if not truncmask:
_,truncc,_ = gencoords(N,d,rad,True)
return truncc
c = gencoords_base(N,d)
if rad is not None:
if trunctype == 'circ':
r2 = n.sum(c**2,axis=1)
trunkmask = r2 < (rad*N/2.0)**2
elif trunctype == 'square':
r = n.max(n.abs(c),axis=1)
trunkmask = r < (rad*N/2.0)
truncc = c[trunkmask,:]
else:
trunkmask = n.ones((c.shape[0],),dtype=n.bool8)
truncc = c
return c,truncc,trunkmask