-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsincint.pyx
executable file
·640 lines (515 loc) · 22.5 KB
/
sincint.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#cython: boundscheck=False
# Fast code for interpolation
# the interpolant should be stored as a sparse matrix. Either as a csr_matrix or as a custom version
# need to support totally empty columns (for points totally outside the circle)
# need to support replication without recomputation (for only computing half of the fft)
# need to be very fast at slicing
# slice generation time is irrelevant for lebedev (unless need to use richardson extrap but not even then)
# memory should be manageable (100pts * 100 angles = 10000 slices, each 128*128*5*5*5 = 2M*4 bytes per slice...
# need to somehow only store x, y, z filters seperately since they are seperable
# could store indeces of 5x5x5 neighborhood for each point in a slice, and the x,y,z filter..
# extract the values (this is slow, since copying) then apply the filters sequentially then sum
# for now just generate one slice operator (csr_matrix) from an angle
# and generate a slice from that
# NOTE: NUMPY WILL USE THREADED MKL, WHICH DOES NOT PLAY NICE WITH MULTIPROCESSING.
# FOR MULTIPROCESSING TO GIVE A (LARGE) BENIFIT, export MKL_NUM_THREADS=1
# BUT THIS SLOWS DOWN MAJOR NUMPY OPERATIONS
import numpy as n
cimport numpy as n
from geom import *
import scipy.sparse as sp
DTYPE = n.float32
CDTYPE = n.complex64
ITYPE = n.int32
UITYPE = n.uint32
ctypedef n.float32_t DTYPE_t
ctypedef n.complex64_t CDTYPE_t
ctypedef int ITYPE_t
ctypedef unsigned int UITYPE_t
from libc.math cimport round,floor,ceil,sqrt
#from cython.parallel import parallel, prange, threadid
#cimport openmp
from libc.stdlib cimport abort, malloc, free
## ---------- LOOK UP TABLE PARAMETERS --------------------------------------------
# size of largest kernel is 2*lut_range
cdef int lut_range = 10
# each interval of size 1 has lut_scale points
cdef unsigned int lut_scale = 1000
# the origin is located at lut_offset
cdef unsigned int lut_offset = lut_scale*lut_range
x = n.linspace(-lut_range,lut_range,lut_scale*(2*lut_range)+1)[:-1]
cdef DTYPE_t[:] sinclut = n.require(n.sinc(x),dtype=DTYPE)
# lanczoslut = n.sinc(x)*n.sinc(x/a) for a kernel with 2a taps
cdef DTYPE_t[:] lanczos3lut = n.require(n.sinc(x)*n.sinc(x/1.5)*(n.abs(x) <= 1.5),dtype=DTYPE)
cdef DTYPE_t[:] lanczos4lut = n.require(n.sinc(x)*n.sinc(x/2.0)*(n.abs(x) <= 2.0),dtype=DTYPE)
cdef DTYPE_t[:] lanczos5lut = n.require(n.sinc(x)*n.sinc(x/2.5)*(n.abs(x) <= 2.5),dtype=DTYPE)
cdef DTYPE_t[:] lanczos6lut = n.require(n.sinc(x)*n.sinc(x/3.0)*(n.abs(x) <= 3.0),dtype=DTYPE)
cdef DTYPE_t[:] lanczos7lut = n.require(n.sinc(x)*n.sinc(x/3.5)*(n.abs(x) <= 3.5),dtype=DTYPE)
cdef DTYPE_t[:] lanczos8lut = n.require(n.sinc(x)*n.sinc(x/4.0)*(n.abs(x) <= 4.0),dtype=DTYPE)
cdef DTYPE_t[:] lanczos9lut = n.require(n.sinc(x)*n.sinc(x/4.5)*(n.abs(x) <= 4.5),dtype=DTYPE)
cdef DTYPE_t[:] lanczos10lut = n.require(n.sinc(x)*n.sinc(x/5.0)*(n.abs(x) <= 5.0),dtype=DTYPE)
cdef DTYPE_t[:] quadlut = ((n.abs(x) <= 0.5) * (1-2*x**2) + ((n.abs(x)<1)*(n.abs(x)>0.5)) * 2* (1-n.abs(x))**2 ).astype(DTYPE)
## ------------ FUNCTIONS ----------------------------------------------
cdef void kernel_lut (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] lut, DTYPE_t[:] res) nogil:
cdef unsigned int r,c,R,C
cdef unsigned int lutI
R = x2.shape[0]
C = x2.shape[1]
for r in xrange(R):
lutI = <unsigned int>((x2[r,0] - x1[0]) * lut_scale)+lut_offset
res[r] = lut[lutI]
for c in xrange(1,C):
lutI = <unsigned int>((x2[r,c] - x1[c]) * lut_scale)+lut_offset
res[r] *= lut[lutI]
cdef void kernel_lanczos3 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos3lut,res)
cdef void kernel_lanczos4 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos4lut,res)
cdef void kernel_lanczos5 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos5lut,res)
cdef void kernel_lanczos6 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos6lut,res)
cdef void kernel_lanczos7 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos7lut,res)
cdef void kernel_lanczos8 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos8lut,res)
cdef void kernel_lanczos9 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos9lut,res)
cdef void kernel_lanczos10 (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,lanczos10lut,res)
cdef void kernel_sinc (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,sinclut,res)
cdef void kernel_linear (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
cdef unsigned int r, c, R, C
R = x2.shape[0]
C = x2.shape[1]
for r in xrange(R):
res[r] = 1.0 - x2[r,0] + (2*x2[r,0] - 1)*x1[0]
for c in xrange(1,C):
res[r] *= 1.0 - x2[r,c] + (2*x2[r,c] - 1)*x1[c]
cdef void kernel_quad (DTYPE_t[:] x1, ITYPE_t[:,:] x2, DTYPE_t[:] res) nogil:
kernel_lut(x1,x2,quadlut,res)
# An interpolation kernel function f(x1,x2,res) computes the weights for the tap
# points x2 when evaluating at interpolation point x1
ctypedef void (*kernfptr)(DTYPE_t[:], ITYPE_t[:,:], DTYPE_t[:]) nogil
cdef kernfptr get_kernel_func(kernel,kernsize):
cdef kernfptr kernfunc = NULL
if kernel == 'sinc':
kernfunc = &kernel_sinc
elif kernel == 'lanczos':
if kernsize == 3:
kernfunc = &kernel_lanczos3
elif kernsize == 4:
kernfunc = &kernel_lanczos4
elif kernsize == 5:
kernfunc = &kernel_lanczos5
elif kernsize == 6:
kernfunc = &kernel_lanczos6
elif kernsize == 7:
kernfunc = &kernel_lanczos7
elif kernsize == 8:
kernfunc = &kernel_lanczos8
elif kernsize == 9:
kernfunc = &kernel_lanczos9
elif kernsize == 10:
kernfunc = &kernel_lanczos10
else:
assert False, 'Lanczos only supported for sizes between 3 and 10'
elif kernel == 'linear':
kernfunc = &kernel_linear
assert kernsize == 2, 'kernelsize must be 2 for a linear kernel'
elif kernel == 'quad':
kernfunc = &kernel_quad
assert kernsize == 2, 'kernelsize must be 2 for a quad kernel'
else:
assert False, 'Unknown kernel requested'
return kernfunc
cdef void mult(DTYPE_t[:,:] R, DTYPE_t[:,:] p, DTYPE_t[:,:] out) nogil:
cdef unsigned int i, j
cdef DTYPE_t v
for k in xrange(p.shape[1]):
for i in xrange(R.shape[0]):
v = R[i,0]*p[0,k]
for j in xrange(1,R.shape[1]):
v += R[i,j]*p[j,k]
out[i,k] = v
cdef void mult_vec(DTYPE_t[:,:] R, DTYPE_t[:] p, DTYPE_t[:] out) nogil:
cdef unsigned int i, j
cdef DTYPE_t v
for i in xrange(R.shape[0]):
v = R[i,0]*p[0]
for j in xrange(1,R.shape[1]):
v += R[i,j]*p[j]
out[i] = v
cdef void mult_vec_ui(DTYPE_t[:,:] R, UITYPE_t[:] p, DTYPE_t[:] out) nogil:
cdef unsigned int i, j
cdef DTYPE_t v
for i in xrange(R.shape[0]):
v = R[i,0]*p[0]
for j in xrange(1,R.shape[1]):
v += R[i,j]*p[j]
out[i] = v
ctypedef void (*truncfptr)(DTYPE_t[:], ITYPE_t[:]) nogil
cdef void round_vec(DTYPE_t[:] p, ITYPE_t[:] pi) nogil:
cdef unsigned int i
for i in xrange(p.shape[0]):
pi[i] = <ITYPE_t>round(p[i])
cdef void floor_vec(DTYPE_t[:] p, ITYPE_t[:] pi) nogil:
cdef unsigned int i
for i in xrange(p.shape[0]):
pi[i] = <ITYPE_t>floor(p[i])
def compute_interpolation_matrix(DTYPE_t[:,:,:] Rs, int N_dst, int N_src, float rad,
kernel, int kernsize,
DTYPE_t[:,:,:] symRs = None):
"""
Compute the (sparse) interpolation matrix corresponding to a set of transformation matrices
R using a particular kernel and radius in Fourier space.
Returns P, where P represents a (N_src x N_src x N_src) -> (N_R x N_T) mapping
where the output is in row-major order (ie, order='C' with all N_T coeffs corresponding to
Rs[0] stored first).
"""
cdef unsigned int si, ri, r, i, k
cdef unsigned int imD = Rs.shape[2]
cdef unsigned int intD = Rs.shape[1]
cdef kernfptr kernfunc = get_kernel_func(kernel,kernsize)
cdef truncfptr truncfunc
if kernsize % 2 != 0:
# odd kernel size - round the location to the nearest grid
truncfunc = &round_vec
else:
# even kernel size - floor the location to the nearest grid
truncfunc = &floor_vec
cdef DTYPE_t[:,:] im_pts = gencoords(N_dst,imD,rad)
cdef unsigned int N_T = im_pts.shape[0]
cdef unsigned int N_R = Rs.shape[0]
cdef unsigned int N_sym = 1+symRs.shape[0] if symRs is not None else 1
if N_sym > 1:
assert symRs.shape[1] == intD
assert symRs.shape[2] == intD
cdef unsigned int intksize = kernsize**intD
# interpolation tap points (about 0,0,0)
cdef ITYPE_t[:,:] p = n.require(gencoords(kernsize,intD).reshape((intksize,intD)),dtype=ITYPE)+1
# WARNING: This assumes that the model is stored with order='C'
cdef ITYPE_t[:] strides = n.array([N_src**(intD-1-i) for i in range(intD)], dtype=ITYPE)
# pidx is the linear index offsets of the tap points
cdef ITYPE_t[:] pidx = n.require(n.dot(p, strides),dtype=ITYPE)
# Allocate memory for the sparse matrix output
cdef ITYPE_t[:] indptrs = n.empty(N_R*N_T+1, dtype=ITYPE)
cdef ITYPE_t[:] indices = n.empty(N_R*N_T*intksize*N_sym, dtype=ITYPE)
cdef DTYPE_t[:] vals = n.empty(N_R*N_T*intksize*N_sym, dtype=DTYPE)
# Temporary storage for computation
cdef DTYPE_t[:] kvals = n.empty(intksize, dtype=DTYPE)
cdef DTYPE_t[:] point = n.empty(intD, dtype=DTYPE)
cdef DTYPE_t[:] int_pt = n.empty(intD, dtype=DTYPE)
cdef ITYPE_t[:] int_pti = n.empty(intD, dtype=ITYPE)
cdef unsigned int spidx, rcount
cdef ITYPE_t center
cdef DTYPE_t scale = ((<DTYPE_t>N_src)/N_dst)*(n.sqrt(<DTYPE_t>N_dst)**(intD-imD))/N_sym
cdef int inbounds, cpti
cdef DTYPE_t[:,:] cR, cSR
cdef DTYPE_t[:,:] cRtmp = n.empty((intD,imD),dtype=DTYPE)
spidx = 0
rcount = 0
with nogil:
for ri in xrange(N_R):
cR = Rs[ri,:,:]
for r in xrange(N_T):
indptrs[rcount] = spidx
rcount += 1
for si in xrange(N_sym):
if si == 0:
cSR = cR
else:
mult(symRs[si-1,:,:],cR,cRtmp)
cSR = cRtmp
mult_vec(cSR,im_pts[r],int_pt)
truncfunc(int_pt,int_pti)
center = 0
for i in xrange(intD):
center += (int_pti[i] + N_src/2)*strides[i]
point[i] = int_pt[i] - int_pti[i]
kernfunc(point, p, kvals)
for k in xrange(intksize):
inbounds = 1
for i in xrange(intD):
cpti = int_pti[i] + p[k,i] + N_src/2
inbounds = inbounds and cpti >= 0 and cpti < N_src
if kvals[k] != 0 and inbounds:
indices[spidx] = pidx[k] + center
vals[spidx] = kvals[k]
spidx += 1
indptrs[rcount] = spidx
if scale != 1:
# Needed due to the use of a unitary FFT and/or symmetry
for r in xrange(spidx):
vals[r] *= scale
P = sp.csr_matrix( (vals[0:spidx], indices[0:spidx], indptrs),
(int(N_R*N_T),N_src**intD), dtype = n.float32 )
return P
def map_fspace_coordinates(CDTYPE_t[:,:,:] V, DTYPE_t[:,:] pts,
kernel, int kernsize):
output_ary = n.empty(pts.shape[0],dtype=CDTYPE)
cdef CDTYPE_t[:] output = output_ary
cdef kernfptr kernfunc = get_kernel_func(kernel,kernsize)
cdef truncfptr truncfunc
if kernsize % 2 != 0:
# odd kernel size - round the location to the nearest grid
truncfunc = &round_vec
else:
# even kernel size - floor the location to the nearest grid
truncfunc = &floor_vec
cdef unsigned int intksize = kernsize**3
cdef DTYPE_t[:] point = n.empty((3), dtype=DTYPE)
cdef ITYPE_t[:,:] p = n.require(gencoords(kernsize,3).reshape((intksize,3)),dtype=ITYPE)+1
cdef ITYPE_t[:] int_pti = n.empty((3), dtype=ITYPE)
cdef UITYPE_t[:] vpti = n.empty((3), dtype=UITYPE)
cdef DTYPE_t[:] vals = n.empty((intksize), dtype=DTYPE)
cdef CDTYPE_t cV
cdef unsigned int pi, i, k
cdef int tmp
with nogil:
for pi in range(pts.shape[0]):
truncfunc(pts[pi],int_pti)
for i in xrange(3):
point[i] = pts[pi,i] - int_pti[i]
kernfunc(point, p, vals)
cV = 0
for k in xrange(intksize):
inbounds = 1
for i in xrange(3):
tmp = int_pti[i] + p[k,i]
if (tmp < 0) or (tmp >= V.shape[i]):
inbounds = 0
break
vpti[i] = <UITYPE_t>tmp
if inbounds:
cV += vals[k]*V[vpti[0],vpti[1],vpti[2]]
output [pi] = cV
return output_ary
def symmetrize_fspace_volume(CDTYPE_t[:,:,:] V,
float rad, kernel, int kernsize,
DTYPE_t[:,:,:] symRs,
out_ary = None,
unsigned int nthreads = 0):
cdef kernfptr kernfunc = get_kernel_func(kernel,kernsize)
cdef truncfptr truncfunc
if kernsize % 2 != 0:
# odd kernel size - round the location to the nearest grid
truncfunc = &round_vec
else:
# even kernel size - floor the location to the nearest grid
truncfunc = &floor_vec
cdef unsigned int intksize = kernsize**3
# interpolation tap points (about 0,0,0)
cdef ITYPE_t[:,:] p = n.require(gencoords(kernsize,3).reshape((intksize,3)),dtype=ITYPE)+1
cdef ITYPE_t N = V.shape[0] # THIS MUST BE A SIGNED TYPE
assert V.shape[1] == N and V.shape[2] == N
# cdef int maxthreads = openmp.omp_get_max_threads()
# if nthreads == 0:
# nthreads = maxthreads
nthreads = 1
if out_ary is None:
out_ary = n.empty_like(V)
cdef CDTYPE_t[:,:,:] out = out_ary
assert out.shape[0] == N
assert out.shape[1] == N
assert out.shape[2] == N
assert symRs.shape[1] == 3 and symRs.shape[2] == 3
cdef unsigned int rI, x, y, z, vi, i, k
cdef DTYPE_t[:] point = n.empty((3), dtype=DTYPE)
cdef DTYPE_t[:] pt = n.empty((3),dtype=DTYPE)
cdef DTYPE_t[:] int_pt = n.empty((3),dtype=DTYPE)
cdef ITYPE_t[:] int_pti = n.empty((3), dtype=ITYPE)
cdef UITYPE_t[:] vpti = n.empty((3), dtype=UITYPE)
cdef DTYPE_t[:] vals = n.empty((intksize), dtype=DTYPE)
cdef unsigned int N_sym = symRs.shape[0]
cdef unsigned int N2 = N**2
cdef int tmp
cdef int N_2 = N/2
cdef DTYPE_t rad2_thresh = ((rad*N/2.0)+(kernsize/2)+1)**2
cdef CDTYPE_t cV
cdef int inbounds
with nogil:
for vi in xrange(N**3):
x = vi/N2
y = (vi % N2)/N
z = (vi % N)
pt[0] = <ITYPE_t>(x) - N_2
pt[1] = <ITYPE_t>(y) - N_2
pt[2] = <ITYPE_t>(z) - N_2
if pt[0]**2 + pt[1]**2 + pt[2]**2 > rad2_thresh:
out[x,y,z] = V[x,y,z]
continue
cV = V[x,y,z]
for rI in xrange(N_sym):
mult_vec(symRs[rI,:,:],pt,int_pt)
truncfunc(int_pt,int_pti)
for i in xrange(3):
point[i] = int_pt[i] - int_pti[i]
kernfunc(point, p, vals)
for k in xrange(intksize):
inbounds = 1
for i in xrange(3):
tmp = int_pti[i] + p[k,i] + N_2
if (tmp < 0) or (tmp >= N):
inbounds = 0
break
vpti[i] = <UITYPE_t>tmp
if inbounds:
cV += vals[k]*V[vpti[0],vpti[1],vpti[2]]
out[x,y,z] = cV
return out_ary
cdef DTYPE_t trilin_interp(DTYPE_t[:,:,:] V, DTYPE_t[:] p) nogil:
cdef DTYPE_t x = p[0]
cdef DTYPE_t y = p[1]
cdef DTYPE_t z = p[2]
cdef UITYPE_t px0 = <UITYPE_t>floor(x)
cdef UITYPE_t py0 = <UITYPE_t>floor(y)
cdef UITYPE_t pz0 = <UITYPE_t>floor(z)
cdef UITYPE_t px1 = <UITYPE_t>ceil(x)
cdef UITYPE_t py1 = <UITYPE_t>ceil(y)
cdef UITYPE_t pz1 = <UITYPE_t>ceil(z)
cdef DTYPE_t rx = x - px0
cdef DTYPE_t ry = y - py0
cdef DTYPE_t rz = z - pz0
cdef DTYPE_t V000 = V[px0,py0,pz0]
cdef DTYPE_t V001 = V[px0,py0,pz1]
cdef DTYPE_t V010 = V[px0,py1,pz0]
cdef DTYPE_t V011 = V[px0,py1,pz1]
cdef DTYPE_t V100 = V[px1,py0,pz0]
cdef DTYPE_t V101 = V[px1,py0,pz1]
cdef DTYPE_t V110 = V[px1,py1,pz0]
cdef DTYPE_t V111 = V[px1,py1,pz1]
cdef DTYPE_t V_00 = V000 * (1 - rx) + V100 * rx
cdef DTYPE_t V_01 = V001 * (1 - rx) + V101 * rx
cdef DTYPE_t V_10 = V010 * (1 - rx) + V110 * rx
cdef DTYPE_t V_11 = V011 * (1 - rx) + V111 * rx
cdef DTYPE_t V__0 = V_00 * (1 - ry) + V_10 * ry
cdef DTYPE_t V__1 = V_01 * (1 - ry) + V_11 * ry
return V__0 * (1 - rz) + V__1 * rz
def symmetrize_volume(DTYPE_t[:,:,:] V,
DTYPE_t[:,:,:] symRs,
out_ary = None,
unsigned int nthreads = 0):
cdef unsigned int N = V.shape[0]
assert V.shape[1] == N and V.shape[2] == N
if out_ary is None:
out_ary = n.empty_like(V)
cdef DTYPE_t[:,:,:] out = out_ary
assert out.shape[0] == N
assert out.shape[1] == N
assert out.shape[2] == N
assert symRs.shape[1] == 3 and symRs.shape[2] == 3
# cdef int maxthreads = openmp.omp_get_max_threads()
# if nthreads == 0:
# nthreads = maxthreads
nthreads = 1
cdef unsigned int rI, x, y, z, vi
cdef DTYPE_t[:,:] pt = n.empty((nthreads,3),dtype=DTYPE)
cdef DTYPE_t[:,:] Rpt = n.empty((nthreads,3),dtype=DTYPE)
cdef unsigned int N_sym = symRs.shape[0]
cdef unsigned int thId
cdef unsigned int N2 = N**2
cdef DTYPE_t N_2 = N/2.0
cdef DTYPE_t cV
with nogil:
thId = 0
for vi in xrange(N**3):
# for vi in prange(N**3,schedule='static',num_threads=nthreads,nogil=True):
# thId = threadid()
x = vi/N2
y = (vi % N2)/N
z = (vi % N)
pt[thId,0] = x - N_2
pt[thId,1] = y - N_2
pt[thId,2] = z - N_2
cV = V[x,y,z]
for rI in xrange(N_sym):
mult_vec(symRs[rI,:,:],pt[thId],Rpt[thId])
Rpt[thId,0] += N_2
Rpt[thId,1] += N_2
Rpt[thId,2] += N_2
if Rpt[thId,0] >= 0 and Rpt[thId,0] <= (N-1) and Rpt[thId,1] >= 0 and Rpt[thId,1] <= (N-1) and Rpt[thId,2] >= 0 and Rpt[thId,2] <= (N-1):
# cV = cV + trilin_interp(V,Rpt[thId])
cV += trilin_interp(V,Rpt[thId])
out[x,y,z] = cV
return out_ary
cdef DTYPE_t bilin_interp(DTYPE_t[:,:] V, DTYPE_t[:] p) nogil:
cdef DTYPE_t x = p[0]
cdef DTYPE_t y = p[1]
cdef UITYPE_t px0 = <UITYPE_t>floor(x)
cdef UITYPE_t py0 = <UITYPE_t>floor(y)
cdef UITYPE_t px1 = <UITYPE_t>ceil(x)
cdef UITYPE_t py1 = <UITYPE_t>ceil(y)
cdef DTYPE_t rx = x - px0
cdef DTYPE_t ry = y - py0
cdef DTYPE_t V00 = V[px0,py0]
cdef DTYPE_t V01 = V[px0,py1]
cdef DTYPE_t V10 = V[px1,py0]
cdef DTYPE_t V11 = V[px1,py1]
cdef DTYPE_t V_0 = V00 * (1 - rx) + V10 * rx
cdef DTYPE_t V_1 = V01 * (1 - rx) + V11 * rx
return V_0 * (1 - ry) + V_1 * ry
def symmetrize_volume_z(DTYPE_t[:,:,:] V,
DTYPE_t[:,:,:] symRs,
out_ary = None,
unsigned int nthreads = 0):
cdef unsigned int N = V.shape[0]
assert V.shape[1] == N and V.shape[2] == N
if out_ary is None:
out_ary = n.empty_like(V)
cdef DTYPE_t[:,:,:] out = out_ary
assert out.shape[0] == N
assert out.shape[1] == N
assert out.shape[2] == N
assert (symRs.shape[1] == 3 and symRs.shape[2] == 3) or (symRs.shape[1] == 2 and symRs.shape[2] == 2)
# cdef int maxthreads = openmp.omp_get_max_threads()
# if nthreads == 0:
# nthreads = maxthreads
nthreads = 1
cdef unsigned int rI, x, y, z, vi
cdef DTYPE_t[:,:] pt = n.empty((nthreads,2),dtype=DTYPE)
cdef DTYPE_t[:,:] Rpt = n.empty((nthreads,2),dtype=DTYPE)
cdef unsigned int N_sym = symRs.shape[0]
cdef unsigned int thId
cdef unsigned int N2 = N**2
cdef DTYPE_t N_2 = N/2.0
cdef DTYPE_t cV
with nogil:
thId = 0
for vi in xrange(N**2):
# for vi in prange(N**2,schedule='static',num_threads=nthreads,nogil=True):
# thId = threadid()
x = vi/N
y = vi % N
pt[thId,0] = x - N_2
pt[thId,1] = y - N_2
for z in xrange(N):
cV = V[x,y,z]
for rI in xrange(N_sym):
mult_vec(symRs[rI,:2,:2],pt[thId],Rpt[thId])
Rpt[thId,0] += N_2
Rpt[thId,1] += N_2
if Rpt[thId,0] >= 0 and Rpt[thId,0] <= (N-1) and Rpt[thId,1] >= 0 and Rpt[thId,1] <= (N-1):
# cV = cV + trilin_interp(V,Rpt[thId])
cV += bilin_interp(V[:,:,z],Rpt[thId])
out[x,y,z] = cV
return out_ary
def gentrunctofull (N=128, rad=0.3):
""" Generates a sparse matrix operator that maps truncated image fourier coefficients (R) back to a full N**2 vector """
xy = gencoords(N,2)
r2 = n.sum(xy**2,axis=1)
active_xy = r2 < (rad*N/2.0)**2
R = sum(active_xy)
splil = sp.lil_matrix((N**2, R), dtype=n.float32)
j=0
for i,v in enumerate(active_xy):
if v:
splil[i, j] = 1.0
j += 1
spcsr = splil.tocsr()
spcsr.eliminate_zeros()
return spcsr
def genfulltotrunc (N=128, rad=0.3):
""" Generates a sparse matrix operator that maps full N**2 vector into truncated image fourier coefficients (R) """
return gentrunctofull(N,rad).T