-
Notifications
You must be signed in to change notification settings - Fork 140
/
opennurbs_circle.cpp
614 lines (546 loc) · 13.8 KB
/
opennurbs_circle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//
// Copyright (c) 1993-2022 Robert McNeel & Associates. All rights reserved.
// OpenNURBS, Rhinoceros, and Rhino3D are registered trademarks of Robert
// McNeel & Associates.
//
// THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
// ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE AND OF
// MERCHANTABILITY ARE HEREBY DISCLAIMED.
//
// For complete openNURBS copyright information see <http://www.opennurbs.org>.
//
////////////////////////////////////////////////////////////////
#include "opennurbs.h"
#if !defined(ON_COMPILING_OPENNURBS)
// This check is included in all opennurbs source .c and .cpp files to insure
// ON_COMPILING_OPENNURBS is defined when opennurbs source is compiled.
// When opennurbs source is being compiled, ON_COMPILING_OPENNURBS is defined
// and the opennurbs .h files alter what is declared and how it is declared.
#error ON_COMPILING_OPENNURBS must be defined when compiling opennurbs
#endif
ON_Circle::ON_Circle( const ON_Plane& p, double r )
{
Create( p, r );
}
ON_Circle::ON_Circle( const ON_3dPoint& C, double r )
{
Create( C, r );
}
ON_Circle::ON_Circle( const ON_Plane& pln, const ON_3dPoint& C, double r )
{
Create( pln, C, r );
}
ON_Circle::ON_Circle( const ON_2dPoint& P, const ON_2dPoint& Q, const ON_2dPoint& R )
{
Create(P,Q,R);
}
ON_Circle::ON_Circle( const ON_3dPoint& P, const ON_3dPoint& Q, const ON_3dPoint& R )
{
Create(P,Q,R);
}
double ON_Circle::Radius() const
{
return radius;
}
double ON_Circle::Diameter() const
{
return 2.0*radius;
}
const ON_3dPoint& ON_Circle::Center() const
{
return plane.origin;
}
const ON_3dVector& ON_Circle::Normal() const
{
return plane.zaxis;
}
const ON_Plane& ON_Circle::Plane() const
{
return plane;
}
ON_BoundingBox ON_Circle::BoundingBox() const
{
ON_BoundingBox bbox;
ON_3dPoint corners[4]; // = corners of square that contains circle
corners[0] = plane.PointAt( radius, radius );
corners[1] = plane.PointAt( radius,-radius );
corners[2] = plane.PointAt(-radius, radius );
corners[3] = plane.PointAt(-radius,-radius );
bbox.Set(3,0,4,3,&corners[0].x,false);
return bbox;
}
bool ON_Circle::Transform( const ON_Xform& xform )
{
const ON_Plane plane0(plane);
const bool rc = plane.Transform(xform);
if (!rc)
{
// restore original
plane = plane0;
}
else
{
const double ztol = 1.0e-12;
double a,b,c,d,r1,r2,s;
// determine scale factor in circle's plane
// In practice, transformation are either rotations,
// the scale factor is clearly distinct from 1,
// or the transformation does not map a circle
// to a circle. The code below has tolerance checks
// so that anything that is close to a rotation gets
// treated does not change the radius. If it is
// clearly a uniform scale in the plane of the circle
// the scale factor is calculated without using a
// determinant. Sine "2d scales" are common, it doesn't
// work well use the cubed root of the xform'd determinant.
ON_3dVector V = xform*plane0.xaxis;
a = V*plane.xaxis;
b = V*plane.yaxis;
if (fabs(a) >= fabs(b))
{
r1 = fabs(a);
if ( r1 > 0.0)
{
a = (a>0.0) ? 1.0 : -1.0;
b /= r1;
if ( fabs(b) <= ztol )
{
b = 0.0;
if ( fabs(1.0-r1) <= ztol )
r1 = 1.0;
}
}
}
else
{
r1 = fabs(b);
b = (b>0.0) ? 1.0 : -1.0;
a /= r1;
if ( fabs(a) <= ztol )
{
a = 0.0;
if ( fabs(1.0-r1) <= ztol )
r1 = 1.0;
}
}
V = xform*plane0.yaxis;
c = V*plane.xaxis;
d = V*plane.yaxis;
if (fabs(d) >= fabs(c))
{
r2 = fabs(d);
if (r2 > 0.0)
{
d = (d>0.0) ? 1.0 : -1.0;
c /= r2;
if ( fabs(c) <= ztol )
{
c = 0.0;
if ( fabs(1.0-r2) <= ztol )
r2 = 1.0;
}
}
}
else
{
r2 = fabs(c);
c = (c>0.0) ? 1.0 : -1.0;
d /= r2;
if ( fabs(d) <= ztol )
{
d = 0.0;
if ( fabs(1.0-r2) <= ztol )
r2 = 1.0;
}
}
if ( 0.0 == b
&& 0.0 == c
&& fabs(r1-r2) <= ON_SQRT_EPSILON*(r1+r2)
)
{
// transform is a similarity
s = (r1 == r2) ? r1 : (0.5*(r1+r2)); // = sqrt(r1*r2) but more accurate
}
else
{
// non-uniform scaling or skew in circle's plane
// do something reasonable
s = sqrt(fabs(r1*r2*(a*d-b*c)));
}
if ( s > 0.0 )
{
//#if defined(ON_DEBUG) && !defined(ON_COMPILER_GNU)
//double det = fabs(xform.Determinant());
//double s0 = pow(det,1.0/3.0);
//if ( fabs(s-s0) > ON_SQRT_EPSILON*s0 )
//{
// // non-uniform scale or a bug
// // In the non-uniform scal case, b and c should be
// // "zero".
// int breakpointhere = 0; // (generates gcc warning)
//}
//#endif
if ( fabs(s-1.0) > ON_SQRT_EPSILON )
radius *= s;
}
}
return rc;
}
double ON_Circle::Circumference() const
{
return fabs(2.0*ON_PI*radius);
}
bool ON_Circle::Create( const ON_Plane& p, double r )
{
plane = p;
if ( !plane.IsValid() )
plane.UpdateEquation(); // people often forget to set equation
radius = r;
//m_point[0] = plane.PointAt( radius, 0.0 );
//m_point[1] = plane.PointAt( 0.0, radius );
//m_point[2] = plane.PointAt( -radius, 0.0 );
return ( radius > 0.0 );
}
bool ON_Circle::Create( const ON_3dPoint& C, double r )
{
ON_Plane p = ON_xy_plane;
p.origin = C;
p.UpdateEquation();
return Create( p, r );
}
bool ON_Circle::Create( const ON_Plane& pln,
const ON_3dPoint& C,
double r
)
{
ON_Plane p = pln;
p.origin = C;
p.UpdateEquation();
return Create( p, r );
}
bool ON_Circle::Create( // circle through three 3d points
const ON_2dPoint& P,
const ON_2dPoint& Q,
const ON_2dPoint& R
)
{
return Create(ON_3dPoint(P),ON_3dPoint(Q),ON_3dPoint(R));
}
bool ON_Circle::Create( // circle through three 3d points
const ON_3dPoint& P,
const ON_3dPoint& Q,
const ON_3dPoint& R
)
{
ON_3dPoint C;
ON_3dVector X, Y, Z;
// return ( radius > 0.0 && plane.IsValid() );
//m_point[0] = P;
//m_point[1] = Q;
//m_point[2] = R;
// get normal
for(;;)
{
if ( !Z.PerpendicularTo( P, Q, R ) )
break;
// get center as the intersection of 3 planes
ON_Plane plane0( P, Z );
ON_Plane plane1( 0.5*(P+Q), P-Q );
ON_Plane plane2( 0.5*(R+Q), R-Q );
if ( !ON_Intersect( plane0, plane1, plane2, C ) )
break;
X = P - C;
radius = X.Length();
if ( !(radius > 0.0) )
break;
if ( !X.Unitize() )
break;
Y = ON_CrossProduct( Z, X );
if ( !Y.Unitize() )
break;
plane.origin = C;
plane.xaxis = X;
plane.yaxis = Y;
plane.zaxis = Z;
plane.UpdateEquation();
return true;
}
plane = ON_Plane::World_xy;
radius = 0.0;
return false;
}
//////////
// Create an circle from two 2d points and a tangent at the first point.
bool ON_Circle::Create(
const ON_2dPoint& P, // [IN] point P
const ON_2dVector& Pdir, // [IN] tangent at P
const ON_2dPoint& Q // [IN] point Q
)
{
return Create( ON_3dPoint(P), ON_3dVector(Pdir), ON_3dPoint(Q) );
}
//////////
// Create an circle from two 3d points and a tangent at the first point.
bool ON_Circle::Create(
const ON_3dPoint& P, // [IN] point P
const ON_3dVector& Pdir, // [IN] tangent at P
const ON_3dPoint& Q // [IN] point Q
)
{
bool rc = false;
double a, b;
ON_3dVector QP, RM, RP, X, Y, Z;
ON_3dPoint M, C;
ON_Line A, B;
// n = normal to circle
QP = Q-P;
Z = ON_CrossProduct( QP, Pdir );
if ( Z.Unitize() ) {
M = 0.5*(P+Q);
RM = ON_CrossProduct( QP, Z ); // vector parallel to center-M
A.Create(M,M+RM);
RP = ON_CrossProduct( Pdir, Z ); // vector parallel to center-P
B.Create(P,P+RP);
if ( ON_Intersect( A, B, &a, &b ) ) {
C = A.PointAt( a ); // center = intersection of lines A and B
X = P-C;
radius = C.DistanceTo(P);
if ( X.Unitize() ) {
Y = ON_CrossProduct( Z, X );
if ( Y*Pdir < 0.0 )
{
Z = -Z;
Y = -Y;
RM = -RM;
}
plane.origin = C;
plane.xaxis = X;
plane.yaxis = Y;
plane.zaxis = Z;
plane.UpdateEquation();
//m_point[0] = P;
//m_point[1] = C + radius*RM/RM.Length();
//m_point[2] = Q;
rc = IsValid();
}
}
}
return rc;
}
bool ON_Circle::IsValid() const
{
bool rc = ( ON_IsValid(radius)
&& radius > 0.0
&& plane.IsValid()
);
return rc;
}
bool ON_Circle::IsInPlane( const ON_Plane& base_plane, double tolerance ) const
{
double d;
int i;
for ( i = 0; i < 8; i++ ) {
d = base_plane.plane_equation.ValueAt( PointAt(0.25*i*ON_PI) );
if ( fabs(d) > tolerance )
return false;
}
return true;
}
ON_3dPoint ON_Circle::PointAt( double t ) const
{
return plane.PointAt( cos(t)*radius, sin(t)*radius );
}
ON_3dVector ON_Circle::DerivativeAt(
int d, // desired derivative ( >= 0 )
double t // parameter
) const
{
double r0 = radius;
double r1 = radius;
switch (std::abs(d) % 4)
{
case 0:
r0 *= cos(t);
r1 *= sin(t);
break;
case 1:
r0 *= -sin(t);
r1 *= cos(t);
break;
case 2:
r0 *= -cos(t);
r1 *= -sin(t);
break;
case 3:
r0 *= sin(t);
r1 *= -cos(t);
break;
}
return ( r0*plane.xaxis + r1*plane.yaxis );
}
ON_3dVector ON_Circle::TangentAt( double t ) const
{
ON_3dVector T = DerivativeAt(1,t);
T.Unitize();
return T;
}
bool ON_Circle::ClosestPointTo( const ON_3dPoint& point, double* t ) const
{
bool rc = true;
if ( t ) {
double u, v;
rc = plane.ClosestPointTo( point, &u, &v );
if ( u == 0.0 && v == 0.0 ) {
*t = 0.0;
}
else {
*t = atan2( v, u );
if ( *t < 0.0 )
*t += 2.0*ON_PI;
}
}
return rc;
}
ON_3dPoint ON_Circle::ClosestPointTo( const ON_3dPoint& point ) const
{
ON_3dPoint P;
ON_3dVector V = plane.ClosestPointTo( point ) - Center();
if ( V.Unitize() ) {
V.Unitize();
P = Center() + Radius()*V;
}
else {
P = PointAt(0.0);
}
return P;
}
double ON_Circle::EquationAt(
const ON_2dPoint& p // coordinates in plane
) const
{
double e, x, y;
if ( radius != 0.0 ) {
x = p.x/radius;
y = p.y/radius;
e = x*x + y*y - 1.0;
}
else {
e = 0.0;
}
return e;
}
ON_2dVector ON_Circle::GradientAt(
const ON_2dPoint& p // coordinates in plane
) const
{
ON_2dVector g;
if ( radius != 0.0 ) {
const double rr = 2.0/(radius*radius);
g.x = rr*p.x;
g.y = rr*p.y;
}
else {
g = ON_2dVector::ZeroVector;
}
return g;
}
bool ON_Circle::Rotate(
double sin_angle, double cos_angle,
const ON_3dVector& axis
)
{
return plane.Rotate( sin_angle, cos_angle, axis );
}
bool ON_Circle::Rotate(
double angle,
const ON_3dVector& axis
)
{
return plane.Rotate( angle, axis );
}
bool ON_Circle::Rotate(
double sin_angle, double cos_angle,
const ON_3dVector& axis,
const ON_3dPoint& point
)
{
return plane.Rotate( sin_angle, cos_angle, axis, point );
}
bool ON_Circle::Rotate(
double angle,
const ON_3dVector& axis,
const ON_3dPoint& point
)
{
return plane.Rotate( angle, axis, point );
}
bool ON_Circle::Translate(
const ON_3dVector& delta
)
{
//m_point[0] += delta;
//m_point[1] += delta;
//m_point[2] += delta;
return plane.Translate( delta );
}
bool ON_Circle::Reverse()
{
//ON_3dPoint P = m_point[0];
//m_point[0] = m_point[2];
//m_point[2] = P;
plane.yaxis = -plane.yaxis;
plane.zaxis = -plane.zaxis;
plane.UpdateEquation();
return true;
}
double ON_Circle::MaximumCoordinate() const
{
return plane.origin.MaximumCoordinate() + radius;
}
int ON_Circle::GetNurbForm( ON_NurbsCurve& nurbscurve ) const
{
int rc = 0;
if ( IsValid() ) {
nurbscurve.Create( 3, true, 3, 9 );
nurbscurve.m_knot[0] = nurbscurve.m_knot[1] = 0.0;
nurbscurve.m_knot[2] = nurbscurve.m_knot[3] = 0.5*ON_PI;
nurbscurve.m_knot[4] = nurbscurve.m_knot[5] = ON_PI;
nurbscurve.m_knot[6] = nurbscurve.m_knot[7] = 1.5*ON_PI;
nurbscurve.m_knot[8] = nurbscurve.m_knot[9] = 2.0*ON_PI;
ON_4dPoint* CV = (ON_4dPoint*)nurbscurve.m_cv;
CV[0] = plane.PointAt( radius, 0.0);
CV[1] = plane.PointAt( radius, radius);
CV[2] = plane.PointAt( 0.0, radius);
CV[3] = plane.PointAt(-radius, radius);
CV[4] = plane.PointAt(-radius, 0.0);
CV[5] = plane.PointAt(-radius, -radius);
CV[6] = plane.PointAt( 0.0, -radius);
CV[7] = plane.PointAt( radius, -radius);
CV[8] = CV[0];
const double w = 1.0/sqrt(2.0);
int i;
for ( i = 1; i < 8; i += 2 ) {
CV[i].x *= w;
CV[i].y *= w;
CV[i].z *= w;
CV[i].w = w;
}
rc = 2;
}
return rc;
}
bool ON_Circle::GetRadianFromNurbFormParameter( double NurbParameter, double* RadianParameter ) const
//returns false unless 0<= NurbParameter, <= 2*PI*Radius
{
if(!IsValid())
return false;
ON_Arc arc(*this, 2*ON_PI);
return arc.GetRadianFromNurbFormParameter( NurbParameter, RadianParameter);
}
bool ON_Circle::GetNurbFormParameterFromRadian( double RadianParameter, double* NurbParameter) const
{
if(!IsValid())
return false;
ON_Arc arc(*this, 2*ON_PI);
return arc.GetNurbFormParameterFromRadian( RadianParameter, NurbParameter);
}