-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDGPs.jl
131 lines (115 loc) · 4.01 KB
/
DGPs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
include("GARCH/GarchLib.jl")
include("MA2/MA2Lib.jl")
include("Logit/LogitLib.jl")
include("TCN.jl")
include("NNEnsemble.jl")
abstract type DGP end
# ------------------------------ GARCH ------------------------------
@Base.kwdef mutable struct Garch <: DGP
N::Int
end
# Garch is parameterized in terms of long run variance β+α, and β's share of β+α
function priordraw(::Garch, S::Int)
# long run variance
lrv = 0.0001 .+ 0.9999rand(S)
βplusα = 0.99rand(S)
share = rand(S)
permutedims(hcat(lrv, βplusα, share))
end
# ------------------------------- MA2 -------------------------------
@Base.kwdef mutable struct Ma2 <: DGP
N::Int
end
# Use rejection sampling to stay inside identified region
function priordraw(::Ma2, S::Int)
θ = zeros(2, S)
for i ∈ axes(θ, 2)
ok = false
θ1 = 0.
θ2 = 0.
while !ok
θ1 = 4. * rand() - 2.
θ2 = 2. * rand() - 1.
ok = insupport([θ1, θ2])
end
θ[:, i] = [θ1, θ2]
end
θ
end
# ------------------------------ Logit ------------------------------
# K is the number of regressions in logit model
@Base.kwdef mutable struct Logit <: DGP
K::Int = 3
N::Int
end
# Prior is Gaussian N(0,1) for each parameter
priordraw(d::Logit, S::Int) = randn(d.K, S)
# ==========================================================================================
# Data Generating Processes
# Generate S samples of length N with K features and P parameters
# Returns are: (K × S × N), (P × S)
# ------------------------------ GARCH ------------------------------
@views function generate(d::Garch, S::Int)
y = priordraw(d, S)
x = zeros(1, S, d.N) # the Garch data for each sample
for s ∈ axes(x, 2)
x[1, s, :] = SimulateGarch11(y[:, s], d.N)
end
Float32.(x), Float32.(y)
end
# ------------------------------- MA2 -------------------------------
@views function generate(d::Ma2, S::Int)
y = priordraw(d, S) # the parameters for each sample
x = zeros(1, S, d.N) # the Garch data for each sample
for s ∈ axes(x, 2)
x[1, s, :] = ma2(y[:, s], d.N)
end
Float32.(x), Float32.(y)
end
# ------------------------------ Logit ------------------------------
@views function generate(d::Logit, S::Int)
y = priordraw(d, S) # The parameters for each sample
x = zeros(d.K+1, S, d.N) # the samples, n obs in each
for s ∈ axes(x, 2)
x[:, s, :] = logit(y[:, s], d.N)
end
Float32.(x), Float32.(y)
end
# Generate to specific device directly
generate(d::DGP, S::Int; dev=cpu) = map(dev, generate(d, S))
# ==========================================================================================
# Useful functions
n_features(d::DGP) = isa(d, Logit) ? d.K+1 : 1
n_params(::Garch) = 3
n_params(::Ma2) = 2
n_params(d::Logit) = d.K
# Data transform for a particular dgp
data_transform(d::DGP, S::Int; dev=cpu) = fit(ZScoreTransform, dev(priordraw(d, S)))
# Build TCN for a given DGP
function build_tcn(d::DGP; dilation=2, kernel_size=8, channels=16, summary_size=10, dev=cpu)
# Compute TCN dimensions and necessary layers for full RFS
n_layers = ceil(Int, necessary_layers(dilation, kernel_size, d.N))
dim_in, dim_out = n_features(d), n_params(d)
dev(
Chain(
TCN(
vcat(dim_in, [channels for _ ∈ 1:n_layers], 1),
kernel_size=kernel_size, # TODO: BE CAREFUL! DILATION IS ACTUALLY NOT HANDLED!!!
),
Conv((1, summary_size), 1 => 1, stride=summary_size),
Flux.flatten,
Dense(d.N ÷ summary_size => dim_out)
)
)
end
# Build TCNEnsemble for a particular DGP
function build_tcn_ensemble(
d::DGP, opt_func, n_models::Int=10;
dilation=2, kernel_size=8, channels=16, summary_size=10, dev=cpu
)
TCNEnsemble(
[build_tcn(d, dilation=dilation, kernel_size=kernel_size, channels=channels,
summary_size=summary_size, dev=dev) for _ ∈ 1:n_models],
[opt_func() for _ ∈ 1:n_models]
)
end