-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralnets.jl
230 lines (214 loc) · 8.2 KB
/
neuralnets.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
using Flux
using StatsBase
# Transform (K × S × T) arrays to RNN or CNN format
tabular2rnn(X) = [view(X, :, :, i) for i ∈ axes(X, 3)]
tabular2conv(X) = permutedims(reshape(X, size(X)..., 1), (4, 3, 1, 2))
# In the following losses, Ŷ is always the sequence of predictions
# RMSE on last item only
rmse_full(Ŷ, Y) = mean(sqrt.(mean(abs2.(ŷᵢ - Y) for ŷᵢ ∈ Ŷ, dims=2)))
rmse_loss(Ŷ, Y) = mean(sqrt.(mean(abs2.(Ŷ[end] - Y),dims=2)))
#rmse_conv(Ŷ, Y) = sqrt(mean(abs2, Ŷ - Y))
rmse_conv(Ŷ, Y) = mean(sqrt.(mean(abs2.(Ŷ - Y), dims=2)))
# MSE on full sequence predicton
mse_full(Ŷ, Y) = sum(mean(abs2.(ŷᵢ - Y) for ŷᵢ ∈ Ŷ))
mse_conv(Ŷ, Y ) = sum(abs2, Ŷ - Y)
# ------------------------------------------------------------------------------------------
# Create a neural network according to chosen specification
function build_net(;
input_nodes=1, output_nodes=3, hidden_nodes=32, dropout_rate=.2,
hidden_layers=2, rnn_cell=Flux.LSTM, activation=tanh, add_dropout=true,
dev=cpu
)
# Input layer
layers = Any[Dense(input_nodes => hidden_nodes, activation)]
# Hidden layers
for i ∈ 1:hidden_layers
add_dropout && push!(layers, Dropout(dropout_rate))
push!(layers, rnn_cell(hidden_nodes => hidden_nodes))
end
# Output layer
push!(layers, Dense(hidden_nodes => output_nodes))
Chain(layers...) |> dev
end
# Bidirectional RNN, see:
# - https://github.com/maetshju/flux-blstm-implementation/blob/master/01-blstm.jl
# - https://github.com/FluxML/model-zoo/blob/master/contrib/audio/speech-blstm/01-speech-blstm.jl
struct BiRNN
encoder
forward
backward
output
end
Flux.@functor BiRNN
function (m::BiRNN)(x)
x = m.encoder.(x)
x = vcat.(m.forward.(x), Flux.flip(m.backward, x))
m.output.(x)[end]
end
# Create a Bidirectional RNN
function build_bidirectional_net(;
input_nodes=1, output_nodes=3, hidden_nodes=32, dropout_rate=.2,
hidden_layers=2, rnn_cell=Flux.LSTM, activation=tanh, add_dropout=true,
dev=cpu
)
# Encoder / input layer
enc = Dense(input_nodes => hidden_nodes, activation)
# RNN layers
layers = Any[]
for i ∈ 1:hidden_layers
add_dropout && push!(layers, Dropout(dropout_rate))
push!(layers, rnn_cell(hidden_nodes => hidden_nodes))
end
rnn₁ = Chain(layers...)
rnn₂ = deepcopy(rnn₁)
# Output layer
out = Dense(2hidden_nodes => output_nodes)
# Bidirectional RNN
BiRNN(enc, rnn₁, rnn₂, out) |> dev
end
# Alias for LSTM and BiLSTM net construction
lstm_net(n_hidden, n_out, n_in, dev=cpu) =
build_net(hidden_nodes=n_hidden, output_nodes=n_out, input_nodes=n_in,
add_dropout=false, dev=dev)
bilstm_net(n_hidden, n_out, n_in, dev=cpu) =
build_bidirectional_net(hidden_nodes=n_hidden, output_nodes=n_out, input_nodes=n_in,
add_dropout=false, dev=dev)
# Creates a 'bias-corrected' version of a pre-trained TCN
function bias_corrected_tcn(tcn, X, Y)
# Compute estimate of a TCN on some data X, Y. Uses this estimate to compute the bias
# of the net. Adds bias correction accordingly and returns the bias corrected net.
Flux.testmode!(tcn) # In case of dropout / layer normalization
bias = mean(tcn(X) - Y, dims=2)
# Beware of memory issues with the deepcopy, ideally always overwrite,
# i.e., tcn = bias_corrected_tcn(tcn, ...)
Chain(deepcopy(tcn), x -> x .- bias)
end
# Trains a recurrent neural network
function train_rnn!(
m, opt, dgp, n, dtY;
epochs=1000, batchsize=32, passes_per_batch=10, dev=cpu, loss=mse_full,
validation_loss=true, validation_frequency=10, validation_size=2000, verbosity=1, bidirectional=false
)
Flux.trainmode!(m) # In case we have dropout / batchnorm
θ = Flux.params(m) # Extract parameters
best_model = deepcopy(m)
best_loss = Inf
# Create a validation set to compute and keep track of losses
if validation_loss
Xv, Yv = map(dev, dgp(n, validation_size))
#StatsBase.transform!(dtY, Yv) # NOTE: want to see loss for real scale
Xv = tabular2rnn(Xv)
losses = zeros(epochs)
end
# Iterate over training epochs
for epoch ∈ 1:epochs
X, Y = map(dev, dgp(n, batchsize)) # Generate a new batch
X = tabular2rnn(X)
# Standardize targets for MSE scaling
# no need to do this for every sample, use a high accuracy
# transform from large draw from prior
StatsBase.transform!(dtY, Y)
# ----- training ---------------------------------------------
for i = 1:passes_per_batch
Flux.reset!(m)
# Compute loss and gradients
if bidirectional # Special case for bidirectional RNN
∇ = gradient(θ) do
Ŷ = [m(X)]
loss(Ŷ, Y)
end
Flux.update!(opt, θ, ∇) # Take gradient descent step
else
∇ = gradient(θ) do
m(X[1]) # don't use first, to warm up state
Ŷ = [m(x) for x ∈ X[2:end]]
loss(Ŷ, Y)
end
Flux.update!(opt, θ, ∇) # Take gradient descent step
end
end
# Compute validation loss and print status if verbose
if validation_loss && mod(epoch, validation_frequency)==0
Flux.reset!(m)
Flux.testmode!(m)
if bidirectional # Special case for bidirectional RNN
Ŷ = [m(Xv)]
else
m(Xv[1]) # Warm up state on first observation
Ŷ = [StatsBase.reconstruct(dtY, m(x)) for x ∈ Xv]
end
current_loss = loss(Ŷ, Yv)
if current_loss < best_loss
best_loss = current_loss
best_model = deepcopy(m)
end
losses[epoch] = current_loss
Flux.trainmode!(m)
epoch % verbosity == 0 && @info "$epoch / $epochs" best_loss current_loss
else
epoch % verbosity == 0 && @info "$epoch / $epochs"
end
end
# Return losses if tracked
if validation_loss
losses, best_model
else
nothing, nothing
end
end
# Train a convolutional neural network
function train_cnn!(
m, opt, dgp, dtY;
epochs=1000, batchsize=32, passes_per_batch=10, dev=cpu, loss=rmse_conv,
validation_loss=true, validation_frequency=10, validation_size=2_000, verbosity=1,
transform=true
)
Flux.trainmode!(m) # In case we have dropout / layer normalization
θ = Flux.params(m) # Extract parameters
best_model = deepcopy(m)
best_loss = Inf
# Create a validation set to compute and keep track of losses
if validation_loss
Xv, Yv = generate(dgp, validation_size, dev=dev)
# Want to see validation RMSE on original scale => no rescaling
Xv = tabular2conv(Xv)
losses = zeros(epochs)
end
# Iterate over training epochs
for epoch ∈ 1:epochs
X, Y = generate(dgp, batchsize, dev=dev) # Generate a new batch
transform && StatsBase.transform!(dtY, Y)
# Transform features to format for CNN
X = tabular2conv(X)
# ----- Training ---------------------------------------------
for _ ∈ 1:passes_per_batch
# Compute loss and gradients
∇ = gradient(θ) do
Ŷ = m(X)
loss(Ŷ, Y)
end
Flux.update!(opt, θ, ∇) # Take gradient descent step
end
# Compute validation loss and print status if verbose
if validation_loss && mod(epoch, validation_frequency)==0
Flux.testmode!(m)
Ŷ = transform ? StatsBase.reconstruct(dtY, m(Xv)) : m(Xv)
current_loss = loss(Ŷ, Yv)
if current_loss < best_loss
best_loss = current_loss
best_model = deepcopy(m)
end
losses[epoch] = current_loss
Flux.trainmode!(m)
epoch % verbosity == 0 && @info "$epoch / $epochs" best_loss current_loss
else
epoch % verbosity == 0 && @info "$epoch / $epochs"
end
end
# Return losses if tracked
if validation_loss
losses, best_model
else
nothing
end
end