diff --git a/.zenodo.json b/.zenodo.json index 191c974..f89457e 100644 --- a/.zenodo.json +++ b/.zenodo.json @@ -7,48 +7,28 @@ "reference": "Cuntz, Mai et al. (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resources Research 51, 6417-6441, doi:10.1002/2015WR016907" } ], - "related_identifiers": [ - { - "scheme": "doi", - "identifier": "10.1002/2015WR016907", - "relation_type": { - "id": "isderivedfrom", - "title": { - "de": "Wird abgeleitet von", - "en": "Is derived from" - } - }, - "resource_type": { - "id": "publication-article", - "title": { - "de": "Zeitschriftenartikel", - "en": "Journal article" - } - } - }, - { - "scheme": "url", - "identifier": "https://github.com/mcuntz/pyeee/", - "relation_type": "isDerivedFrom", - "resource_type": "software" - }, - { - "scheme": "url", - "identifier": "https://mcuntz.github.io/pyeee/", - "relation_type": "isDocumentedBy", - "resource_type": "publication-softwaredocumentation" - }, + "upload_type": "software", + "keywords": [ + "Python utilities", + "Optimization", + "Screening", + "Morris", + "Elementary Effects", + "Morris method", + "Python" + ], + "creators": [ { - "scheme": "url", - "identifier": "https://pypi.org/project/pyeee/", - "relation": "isIdenticalTo", - "resource_type": "software" + "orcid": "0000-0002-5966-1829", + "affiliation": "Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement - INRAE, Nancy, France", + "name": "Matthias Cuntz" }, { - "scheme": "url", - "identifier": "https://anaconda.org/conda-forge/pyeee", - "relation_type": "isIdenticalTo", - "resource_type": "software" + "orcid": "0000-0002-1132-2342", + "affiliation": "University of Waterloo, ON, Canada", + "name": "Juliane Mai" } - ] + ], + "access_right": "open", + "description": "
pyeee is a Python library for performing parameter screening of computational models. It uses Efficient or Sequential Elementary Effects, an extension of Morris' method of Elementary Effects, published by:
\n\nCuntz M, Mai J, Zink M, Thober S, Kumar R, Schäfer D, Schrön M, Craven J, Rakovec O, Spieler D, Prykhodko V, Dalmasso G, Musuuza J, Langenberg B, Attinger A, and Samaniego L (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resources Research 51, 6417-6441, doi:10.1002/2015WR016907
\n\npyeee can be used with Python functions as well as external executables using libraries such as partialwrap. Function evaluations can be distributed with Python's multiprocessing or via MPI.
\n\nThe complete documentation of pyeee is available at: https://mcuntz.github.io/pyeee/
\n\nA similar package (EEE) using a combination of bash and Python scripts is presented at: https://doi.org/10.5281/zenodo.3620894
\n\nThe version 4.0 modernised code structure and documentation, moving everything to Github, and version 4.1 added pyeee to conda-forge.
" }