-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathPAM50_EA_AA.Rmd
196 lines (148 loc) · 6.3 KB
/
PAM50_EA_AA.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
title: "Breast cancer, gene expression analysis in 'black or african-american' and 'white' cohorts, in PAM50 subtypes"
author: "Mikhail Dozmorov"
date: "`r Sys.Date()`"
output:
pdf_document:
toc: no
html_document:
toc: yes
theme: united
bibliography: data.TCGA/TCGA.bib
csl: styles.ref/genomebiology.csl
editor_options:
chunk_output_type: console
---
```{r setup, echo=FALSE, message=FALSE, warning=FALSE}
# Set up the environment
library(knitr)
opts_chunk$set(cache.path='cache/', fig.path='img/', cache=F, tidy=T, fig.keep='high', echo=F, dpi=100, warnings=F, message=F, comment=NA, warning=F, results='as.is', fig.width = 10, fig.height = 6) #out.width=700,
library(pander)
panderOptions('table.split.table', Inf)
set.seed(1)
library(dplyr)
options(stringsAsFactors = FALSE)
```
```{r}
library(curatedTCGAData)
library(TCGAutils)
library(ggplot2)
library("ggsci")
library(scales)
# scales::show_col(pal_lancet("lanonc")(8))
mycols = pal_lancet("lanonc")(8)
library(grid)
library(gridExtra)
library(readr)
library(DescTools)
library(ggprism)
```
```{r echo=TRUE}
selected_genes <- c("MYC")
```
```{r results='hide'}
brca <- curatedTCGAData(diseaseCode = "BRCA", assays = "RNASeq2GeneNorm", FALSE, version = "2.0.1")
# sampleTables(brca)
# Select only solid tumors
brca.primary.solid.tumor <- TCGAsplitAssays(brca, c("01"))
# Raw data
xdata.raw <- t(assay(brca.primary.solid.tumor[[1]]))
xdata.ids <- TCGAbarcode(rownames(xdata.raw))
rownames(xdata.raw) <- xdata.ids
# getSubtypeMap(brca.primary.solid.tumor)
# getClinicalNames("BRCA")
# ydata <- colData(brca.primary.solid.tumor) %>% as.data.frame() %>% select(patientID, race, ethnicity, PAM50.mRNA)
# table(ydata$PAM50.mRNA)
ydata.xena <- read_csv("data.TCGA/XENA_classification.csv")
table(ydata.xena$PAM50Call_RNAseq)
# Subset the data
ydata.xena <- ydata.xena[!is.na(ydata.xena$PAM50Call_RNAseq) & (ydata.xena$race %in% c("white", "black or african american")), ]
# Check all samples are unique. Should be TRUE
nrow(ydata.xena) == length(unique(ydata.xena$sampleID))
# Check that all Xena samples have TCGA data. Should be character(0)
setdiff(ydata.xena$sampleID, xdata.ids)
xdata.raw_subset <- xdata.raw[rownames(xdata.raw) %in% ydata.xena$sampleID, selected_genes, drop = FALSE]
xdata.raw_subset <- xdata.raw_subset[match(ydata.xena$sampleID, rownames(xdata.raw_subset)), , drop = FALSE]
all.equal(rownames(xdata.raw_subset), ydata.xena$sampleID)
# Prepare matrix for plotting
mtx_subset <- data.frame(PAM50 = ydata.xena$PAM50Call_RNAseq, Race = ydata.xena$race, Expression = xdata.raw_subset[, selected_genes] )
# log2 transform expression
mtx_subset$Expression <- log2(mtx_subset$Expression)
# Correct race for plotting
mtx_subset$Race <- ifelse(mtx_subset$Race == "white", "white", "black")
# Tablulate samples
```
# All BRCA Expression analysis in 'black or african-american' and 'white' cohorts
```{r}
table(mtx_subset$Race) %>% pander()
```
```{r fig.height=4, fig.width=4}
ggplot(mtx_subset, aes(x = Race, y = Expression, fill = Race, color = Race)) +
geom_boxplot() +
geom_jitter(shape=20, position=position_jitter(0.2, 0.3), size = 1, alpha = 0.5) +
theme_bw() +
scale_fill_manual(values = mycols[c(6, 3)]) +
scale_color_manual(values = mycols[c(2, 1)]) +
labs(y = expression(log[2](Expression)))
ggsave("results/Figure_All_EA_AA.png", width = 3, height = 3, dpi = 300)
```
### T-test, differences between races in all BRCA
```{r}
t.test(mtx_subset$Expression[mtx_subset$Race == "white"], mtx_subset$Expression[mtx_subset$Race == "black"])$p.value
```
# PAM50 subtypes Expression analysis in 'black or african-american' and 'white' cohorts
```{r}
table(mtx_subset$Race, mtx_subset$PAM50) %>% pander()
```
```{r fig.height=4}
ggplot(mtx_subset, aes(x = Race, y = Expression, fill = Race, color = Race)) +
geom_boxplot() +
geom_jitter(shape=20, position=position_jitter(0.2, 0.3), size = 1, alpha = 0.5) +
theme_bw() +
scale_fill_manual(values = mycols[c(6, 3)]) +
scale_color_manual(values = mycols[c(2, 1)]) +
labs(y = expression(log[2](Expression))) +
facet_grid(~ PAM50)
ggsave("results/Figure_PAM50_EA_AA.png", width = 7, height = 3, dpi = 300)
```
### T-test, differences between races in individual subtypes
For each PAM50 subtypes, compare expression between EA and AA cohorts. Only p-values are shown
### In Basal
```{r}
# DunnettTest(x = mtx_subset$Expression[mtx_subset$PAM50 == "Basal"], g = factor(mtx_subset$Race[mtx_subset$PAM50 == "Basal"]))
t.test(mtx_subset$Expression[mtx_subset$PAM50 == "Basal" & mtx_subset$Race == "white"], mtx_subset$Expression[mtx_subset$PAM50 == "Basal" & mtx_subset$Race == "black"])$p.value
```
### In Her2
```{r}
t.test(mtx_subset$Expression[mtx_subset$PAM50 == "Her2" & mtx_subset$Race == "white"], mtx_subset$Expression[mtx_subset$PAM50 == "Her2" & mtx_subset$Race == "black"])$p.value
```
### In LumA
```{r}
t.test(mtx_subset$Expression[mtx_subset$PAM50 == "LumA" & mtx_subset$Race == "white"], mtx_subset$Expression[mtx_subset$PAM50 == "LumA" & mtx_subset$Race == "black"])$p.value
```
### In LumB
```{r}
t.test(mtx_subset$Expression[mtx_subset$PAM50 == "LumB" & mtx_subset$Race == "white"], mtx_subset$Expression[mtx_subset$PAM50 == "LumB" & mtx_subset$Race == "black"])$p.value
```
### In Normal
Not enough observations
```{r eval=FALSE}
t.test(mtx_subset$Expression[mtx_subset$PAM50 == "Normal" & mtx_subset$Race == "white"], mtx_subset$Expression[mtx_subset$PAM50 == "Normal" & mtx_subset$Race == "black"])$p.value
```
# Two-way Anova
Race and PAM50 effects across all subtypes.
```{r}
model <- aov(Expression ~ PAM50 + Race, data = mtx_subset)
summary(model)
```
Across all subtypes, "Race" differences `r ifelse(summary(model)[[1]]["Race", "Pr(>F)"] < 0.05, "are", "are not")` significant
Across all subtypes, "PAM50" differences `r ifelse(summary(model)[[1]]["PAM50", "Pr(>F)"] < 0.05, "are", "are not")` significant
## Dunnett post-hoc test, differences between PAM50 subtypes separately in European-American and African-American cohorts
### In EA cohort ("white" in TCGA classification)
```{r}
DunnettTest(x = mtx_subset$Expression[mtx_subset$Race == "white"], g = factor(mtx_subset$PAM50[mtx_subset$Race == "white"]))
```
### In AA cohort ("black or african american" in TCGA classification)
```{r}
DunnettTest(x = mtx_subset$Expression[mtx_subset$Race == "black"], g = factor(mtx_subset$PAM50[mtx_subset$Race == "black"]))
```