-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_methodology_figures.py
131 lines (114 loc) · 4.86 KB
/
sample_methodology_figures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# sample_methodology_figures
# this code is to create the 4 small inset figures for the methodology components slide of EGU
# four figures are as follows:
# 1. res parcels and colored resource parcels
# 2. Inundation overlay
# 3. classified road depths
# 4. final traffic assignment (road utilization and decomposition)
# FIGURES WERE SAVED HERE:
# /home/mdp0023/Desktop/external/Data/Network_Data/AOI_Testing/example_figs
import rasterio as rio
import pandas as pd
import numpy as np
import geopandas as gpd
import matplotlib.pyplot as plt
import osmnx as ox
import networkx as nx
import sys
import logging
import network_analysis_base as mynet
# AOI VARIABLES
# Folder paths
f_path = '/home/mdp0023/Desktop/external/Data/Network_Data/AOI_Testing'
f_boundaries = f'{f_path}/AOI_Boundary'
f_graphs = f'{f_path}/AOI_Graphs'
f_parcel_access_shp = f'{f_path}/AOI_Parcel_Access_Shapefiles'
f_res_shp = f'{f_path}/AOI_Residental_Parcel_Shapefiles'
f_resources=f'{f_path}/resource_parcel_samples'
# boundary
aoi_area = f'{f_boundaries}/Neighborhood_Network_AOI.shp'
# boundary with buffer
aoi_buffer = f'{f_boundaries}/Neighborhood_Network_AOI_Buf_1km.shp'
# Centroids of res parcels, and 3 resources
res = f'{f_res_shp}/Residential_Parcels_Points_Network_AOI.shp'
resource1 = f'{f_resources}/resource1_points.shp'
resource2 = f'{f_resources}/resource2_points.shp'
resource3 = f'{f_resources}/resource3_points.shp'
# Shapefiles of res parcels, and 3 resources
res_par = f'{f_res_shp}/Residential_Parcels_Network_AOI.shp'
resource1_par = f'{f_resources}/resource1.shp'
resource2_par = f'{f_resources}/resource2.shp'
resource3_par = f'{f_resources}/resource3.shp'
# Inundation raster
inundation_raster = f'{f_path}/AOI_Inundation.tif'
# bounding box
bbox=f'{f_resources}/bbox.shp'
raster = rio.open(inundation_raster)
# load shapefiles
res=gpd.read_file(res)
resource1=gpd.read_file(resource1)
resource2=gpd.read_file(resource2)
resource3=gpd.read_file(resource3)
res_par = gpd.read_file(res_par)
resource1_par = gpd.read_file(resource1_par)
resource2_par = gpd.read_file(resource2_par)
resource3_par = gpd.read_file(resource3_par)
bbox = gpd.read_file(bbox)
# load networks
network = mynet.read_graph_from_disk(path=f_graphs, name='AOI_Graph')
inundated_net = mynet.read_graph_from_disk(path=f_graphs, name='AOI_Graph_Inundated')
print(list(list(inundated_net.edges(data=True))[0][-1].keys()))
# using inundated_network, solve TA problem - use conservative inundation impact
output = mynet.traffic_assignment(inundated_net,
res,
[resource1, resource2, resource3],
[resource1_par, resource2_par, resource3_par],
dest_method='multiple',
termination_criteria=['iter', 5],
algorithm='path_based',
method='MSA',
sparse_array=True,
G_weight='inundation_travel_time_con',
G_capacity='inundation_capacity_con')
# decompose the TA assignment flow
flow_decomp = mynet.flow_decomposition(output[0],
res,
[resource1, resource2, resource3],
res_par,
[resource1_par, resource2_par, resource3_par],
dest_method='multiple')
# save parcels to determine loss access
# flow_decomp[2].to_file(
# '/home/mdp0023/Desktop/external/Data/Network_Data/AOI_Testing/resource_parcel_samples/loss_access_parcels.shp')
# figure 1: res and resource parcels
mynet.plot_aoi(network,
res_par,
[resource1_par, resource2_par, resource3_par],
background_edges=network,
bbox=bbox)
# figure 2: res and resource parcels with inundation
mynet.plot_aoi(network,
res_par,
[resource1_par, resource2_par, resource3_par],
background_edges=network,
bbox=bbox,
inundation=raster)
# figure 3: classified road depths
mynet.plot_aoi(inundated_net,
res_par,
[resource1_par, resource2_par, resource3_par],
background_edges=network,
bbox=bbox,
edge_color='max_inundation_mm',
edge_width_weight=3)
# load lost access parcels
lost_access_parcels=gpd.read_file(f'{f_resources}/lost_access_parcels_only.shp')
# figure 4: routed vehicles and accessibility
mynet.plot_aoi(output[0],
res_par,
[resource1_par, resource2_par, resource3_par],
background_edges=network,
bbox=bbox,
edge_width='TA_Flow',
loss_access_parcels=lost_access_parcels)
plt.show()