forked from INM-6/beNNch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhpc_benchmark_3.yaml
130 lines (122 loc) · 4.17 KB
/
hpc_benchmark_3.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# beNNch - Unified execution, collection, analysis and
# comparison of neural network simulation benchmarks.
# Copyright (C) 2021 Forschungszentrum Juelich GmbH, INM-6
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
# SPDX-License-Identifier: GPL-3.0-or-later
include-path:
path:
- ../helpers/
- ../config/
# model-specific name and output path
name: HPC
outpath: ../../benchmark_results/HPC
parameterset:
name: model_commands
parameter:
- {name: run_file, type: string, _: "$jube_wp_abspath/hpc_benchmark_3.py"}
- {name: log_path, type: string, _: "${jube_wp_abspath}"}
fileset:
# load and copy model-specific files
name: model_files
copy:
- $model_path/hpc_benchmark_3.py
# This subsituteset maps the parameters that were defined in this yaml
# file to the target patterns that JUBE will search for in the
# simulation files. The pattern file is hpc_benchmark.py. The
# source pattern will be replaced by the values.
substituteset:
name: model_substitutions
iofile: {in: hpc_benchmark_3.py, out: hpc_benchmark_3.py}
sub:
- {source: "{num_vps}", dest: $num_vps}
- {source: "{record_spikes}", dest: $record_spikes}
- {source: "{model_time_sim}", dest: $model_time_sim}
- {source: "{model_time_presim}", dest: $model_time_presim}
- {source: "{N_SCALING}", dest: $scale}
- {source: "{rng_seed}", dest: $rng_seed}
step:
# build step
- name: build
export: true
use:
- from: user_config.yaml
_: user_config
- from: hpc_benchmark_3_config.yaml
_: file_paths,model_parameters,software_parameters
- from: helpers.yaml
_: slurm_build,run_build,files,sub_build_job
do:
- build --get --silent ${simulator} ${version} ${variant} ${suffix} && export DEP=`$submit_cmd --parsable $job_file`
# benchmark step
- name: bench
depend: build
use:
- model_commands, model_files, model_substitutions
- from: user_config.yaml
_: user_config
- from: hpc_benchmark_3_config.yaml
_: file_paths,model_parameters,machine_parameters,software_parameters
- from: helpers.yaml
_: slurm_bench,run_benchmark,files,sub_bench_job,scaling_experiment,init_job_file_variables
do:
done_file: $ready_file
_: $submit_cmd --dependency=afterok:$$DEP $job_file
# analysis step
analyser:
name: analyse
use:
- from: helpers.yaml
_: timer_pattern
analyse:
step: bench
file: timer_data.txt
# result step
result:
name: result
use: analyse
table:
name: result_table
style: csv
sort: number
column:
- rng_seed
- num_nodes
- threads_per_task
- tasks_per_node
- model_time_sim
- wall_time_create
- wall_time_connect
- wall_time_sim
- wall_time_phase_collocate
- wall_time_phase_communicate
- wall_time_phase_deliver
- wall_time_phase_update
- wall_time_communicate_target_data
- wall_time_gather_spike_data
- wall_time_gather_target_data
- wall_time_communicate_prepare
- py_time_kernel_prepare
- py_time_network_local
- py_time_network_global
- py_time_simulate
- py_time_presimulate
- py_time_network_prepare
- py_time_create
- py_time_connect_area
- py_time_connect_cc
- py_time_connect
- base_memory
- network_memory
- init_memory
- total_memory
- num_connections
- local_spike_counter
- e_counter