-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_and_segment_gh.py
421 lines (320 loc) · 17.4 KB
/
detect_and_segment_gh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import sys
import os
from os import path
sys.path.insert(0, '/add-directory-path-where-needed/this-folder')
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import nibabel as nib
import numpy as np
import pandas as pd
import funcs_gh
from sklearn.decomposition import PCA
import matplotlib
matplotlib.axes.Axes.plot
matplotlib.pyplot.plot
matplotlib.axes.Axes.legend
matplotlib.pyplot.legend
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.image as mpimg
import scipy
from scipy.ndimage import zoom
from scipy import signal
from scipy.interpolate import interp1d
import pickle
from sklearn.metrics import precision_recall_curve
from skimage import morphology
from keras.models import Model,load_model,Sequential
from networks_gh import get_unet2, get_rbunet,get_meshNet,get_denseNet,calculatedPerfMeasures
from networks_gh import get_unetCnnRnn
from networks_gh import get_denseNet103, get_unet3
from selectTrainAndTestSubjects_gh import selectTrainAndTestSubjects
def singlePatientDetection(pName,subjectInfo, baseline, params):
#TestSetNum=params['TestSetNum'];
tDim = params['tDim'];
#tpUsed = params['tpUsed'];
deepRed = params['deepReduction'];
PcUsed = params['PcUsed'];
visEnabled = params['visualizeResults'];
visSlider = params['visSlider'];
##### access subject image data and temporal information
vol4D00,_,_,_,_ = funcs_gh.readData4(pName,subjectInfo,reconMethod,0);
zDimOri = vol4D00.shape[2];
timeRes0=subjectInfo['timeRes'][pName];
if not isinstance(timeRes0, (int, float)):
timeRes=float(timeRes0.split("[")[1].split(",")[0]);
else:
timeRes=np.copy(timeRes0);
# start from baseline
im = vol4D00[:,:,:,baseline:];
medianFind = np.median(im);
if medianFind == 0:
medianFind = 1.0;
im = im/medianFind;
vol4D0 = np.copy(im);
origTimeResVec=np.arange(0,vol4D0.shape[3]*timeRes,timeRes);
resamTimeResVec=np.arange(0,50*6,6); # resample to 50 data points
if origTimeResVec[-1]<resamTimeResVec[-1]:
print(pName)
# interpolate image data to resamTimeResVec in time dimension
f_out = interp1d(origTimeResVec,vol4D0, axis=3,bounds_error=False,fill_value=0);
vol4D0 = f_out(resamTimeResVec);
# perform PCA (numPC)
numPC = 5; #50
pca = PCA(n_components=numPC);
vol4Dvecs=np.reshape(vol4D0, (vol4D0.shape[0]*vol4D0.shape[1]*vol4D0.shape[2], vol4D0.shape[3]));
PCs=pca.fit_transform(vol4Dvecs);
vol4Dpcs=np.reshape(PCs, (vol4D0.shape[0],vol4D0.shape[1],vol4D0.shape[2], numPC));
dpcs = np.copy(vol4Dpcs);
dpcs=dpcs/dpcs.max();
da = dpcs.T;
# downsample imge data to 64 x 64 x 64
dsFactor = 3.5; zDim = 64;
im0 = zoom(da,(1,zDim/da.shape[1],1/dsFactor,1/dsFactor),order=0);
sx = 0; xyDim = 64;
DataTest=np.zeros((1,zDim,xyDim,xyDim,tDim));
DataTest[sx,:,:,:,:]=np.swapaxes(im0.T,0,2);
#initialise detection model
n_channels = tDim; n_classes = 3;
#choose relevant detection model
networkToUse = params['networkToUseDetect'];
if networkToUse == 'rbUnet':
model = get_rbunet(xyDim,zDim,n_channels,n_classes,deepRed,0);
elif networkToUse =='Unet':
model = get_unet3(xyDim,zDim,n_channels,n_classes,deepRed,0);
elif networkToUse == 'denseNet':
model = get_denseNet(xyDim,zDim,n_channels,n_classes,deepRed,0);
elif networkToUse == 'tNet':
model = get_denseNet103(xyDim,zDim,n_channels,n_classes,deepRed,0);
#address to detection model
#fileNumModel='Net'+net+'_time'+str(tDim)+'_pcUsed'+str(PcUsed)+'_tpUsed'+str(tpUsed)+'_DR'+str(deepRed)+'_testSet'+str(TestSetNum);
#address = "path-to-folder-containing-trained-detection-model(s)/"+fileNumModel+"/"
address = "path-to-folder-to-hold-detection-model(s)" + "/NetrbUnet_time5_pcUsed1_tpUsed50_DR0_testSet1/"
#address = "path-to-folder-to-hold-detection-model(s)" + "/NetrbUnet_time5_pcUsed1_tpUsed50_DR0_testSet2/"
#load detection model weights
selectedEpoch=params['selectedEpochDetect'];
model.load_weights(address+'detect3D_'+selectedEpoch+'.h5');
#### perform prediction ####
imgs_mask_test= model.predict(DataTest, verbose=1);
multiHead = 0;
if multiHead:
labels_pred=np.argmax(imgs_mask_test[0], axis=4)
else:
labels_pred=np.argmax(imgs_mask_test, axis=4)
# ensure all detected labels for right kidney are on the right half of x dimension
labels_pred[:,:,:,0:int(xyDim/2)][labels_pred[:,:,:,0:int(xyDim/2)]==2]=1;
labels_pred[:,:,:,int(xyDim/2):][labels_pred[:,:,:,int(xyDim/2):]==1]=2;
##### generate bounding boxes (from coarse segmentation) #####
si = 0;
left = labels_pred[si,:,:,:].T==2;
left = left.astype(int);
right = labels_pred[si,:,:,:].T==1;
right = right.astype(int);
####### resample to original test image spatial dimensions
xyDimOri = 224;
KMR=zoom(right,(xyDimOri/np.size(right,0),xyDimOri/np.size(right,1),zDimOri/np.size(right,2)),order=0);
KML=zoom(left,(xyDimOri/np.size(left,0),xyDimOri/np.size(left,1),zDimOri/np.size(left,2)),order=0);
if np.sum(KMR) != 0:
KMR=morphology.remove_small_objects(KMR.astype(bool), min_size=256,in_place=True).astype(int);
KMR = KMR.astype(int);
if np.sum(KML) != 0:
KML=morphology.remove_small_objects(KML.astype(bool), min_size=256,in_place=True).astype(int);
KML = KML.astype(int);
KML[KML>=1]=2;
maskDetect = KMR + KML;
### generate prediction box
boxDetect = [];
aL=np.nonzero(KML==2);
aR=np.nonzero(KMR==1);
if aL[0].size!=0:
boxL=np.array([int((min(aL[0])+max(aL[0]))/2),int((min(aL[1])+max(aL[1]))/2),int((min(aL[2])+max(aL[2]))/2),\
(max(aL[0])-min(aL[0])),(max(aL[1])-min(aL[1])),(max(aL[2])-min(aL[2]))])
else:
boxL=np.zeros((6,));
if aR[0].size!=0:
boxR=np.array([int((min(aR[0])+max(aR[0]))/2),int((min(aR[1])+max(aR[1]))/2),int((min(aR[2])+max(aR[2]))/2),\
(max(aR[0])-min(aR[0])),(max(aR[1])-min(aR[1])),(max(aR[2])-min(aR[2]))])
else:
boxR=np.zeros((6,));
boxDetect=np.vstack([np.array(boxR),np.array(boxL)]);
# identify whether right kidney exists
# identify whether left kidney exists
kidneyNone=np.nonzero(np.sum(boxDetect,axis=1)==0); #right/left
if kidneyNone[0].size!=0:
kidneyNone=np.nonzero(np.sum(boxDetect,axis=1)==0)[0][0]; #right/left
# add extra margins to minimise impact of false-negative predictions
KM = np.copy(maskDetect); KM[KM>1]=1;
xSafeMagin=10;ySafeMagin=10;zSafeMagin=3;
if boxDetect[0,2]+boxDetect[0,5]+3 >= KM.shape[2] or boxDetect[0,2]+boxDetect[0,5]-3 <0:
boxDetect[:,[3,4,5]]=boxDetect[:,[3,4,5]]+[xSafeMagin,ySafeMagin,0];
else:
boxDetect[:,[3,4,5]]=boxDetect[:,[3,4,5]]+[xSafeMagin,ySafeMagin,zSafeMagin];
# xSafeMagin=12;ySafeMagin=12;zSafeMagin=3;
# boxDetect[:,[3,4,5]]=boxDetect[:,[3,4,5]]+[xSafeMagin,ySafeMagin,zSafeMagin];
#### write masks to file ####
predMaskR=np.zeros((1,xyDimOri,xyDimOri,zDimOri));
predMaskL=np.zeros((1,xyDimOri,xyDimOri,zDimOri));
sc = 0;
predMaskR[sc,:,:,:]=KMR;
predMaskL[sc,:,:,:]=KML;
# if np.sum(predMaskR) != 0:
# predMaskL=morphology.remove_small_objects(predMaskL.astype(bool), min_size=256,in_place=True).astype(int);
# if np.sum(predMaskL) != 0:
# predMaskR=morphology.remove_small_objects(predMaskR.astype(bool), min_size=256,in_place=True).astype(int);
Masks2Save={};
predMaskR2=zoom(predMaskR[sc,:,:,:],(1,1,1),order=0);
predMaskL2=zoom(predMaskL[sc,:,:,:],(1,1,1),order=0);
Masks2Save['R']=np.copy(predMaskR2.astype(float));
Masks2Save['L']=np.copy(predMaskL2.astype(float));
# save predicted labels
funcs_gh.writeMasksDetect(pName,subjectInfo,reconMethod,Masks2Save,1);
return maskDetect, boxDetect, kidneyNone, vol4D0, vol4Dpcs, zDimOri
def singlePatientSegmentation(params, pName,subjectInfo, maskDetect, boxDetect, kidneyNone, vol4D0, vol4Dpcs, zDimOri):
#TestSetNum=params['TestSetNum'];
tDim = params['tDim'];
#tpUsed = params['tpUsed'];
deepRed = params['deepReduction'];
PcUsed = params['PcUsed'];
visEnabled = params['visualizeResults'];
visSlider = params['visSlider'];
dx = 64; dy = 64; dz = 64;
Box = np.copy(boxDetect);
maskDetect[maskDetect>1]=1;
exv = 0; # some test image files may require (+/- 5)
if kidneyNone!=0:
croppedData4DR_pcs=vol4Dpcs[Box[0,0]-int(Box[0,3]/2):Box[0,0]+int(Box[0,3]/2),\
Box[0,1]-int(Box[0,4]/2):Box[0,1]+int(Box[0,4]/2),\
Box[0,2]-int(Box[0,5]/2):Box[0,2]+int(Box[0,5]/2),:];
croppedData4DR=vol4D0[Box[0,0]-int(Box[0,3]/2):Box[0,0]+int(Box[0,3]/2),\
Box[0,1]-int(Box[0,4]/2):Box[0,1]+int(Box[0,4]/2),\
Box[0,2]-int(Box[0,5]/2):Box[0,2]+int(Box[0,5]/2),:];
croppedData4DR_pcs=zoom(croppedData4DR_pcs,(dx/np.size(croppedData4DR_pcs,0),dy/np.size(croppedData4DR_pcs,1),dz/np.size(croppedData4DR_pcs,2),1),order=0);
croppedData4DR=zoom(croppedData4DR,(dx/np.size(croppedData4DR,0),dy/np.size(croppedData4DR,1),dz/np.size(croppedData4DR,2),1),order=0);
if kidneyNone!=1:
croppedData4DL_pcs=vol4Dpcs[Box[1,0]-int(Box[1,3]/2)+exv:Box[1,0]+int(Box[1,3]/2)-exv,\
Box[1,1]-int(Box[1,4]/2)+exv:Box[1,1]+int(Box[1,4]/2)-exv,\
Box[1,2]-int(Box[1,5]/2)+exv:Box[1,2]+int(Box[1,5]/2)-exv,:];
croppedData4DL=vol4D0[Box[1,0]-int(Box[1,3]/2)+exv:Box[1,0]+int(Box[1,3]/2)-exv,\
Box[1,1]-int(Box[1,4]/2)+exv:Box[1,1]+int(Box[1,4]/2)-exv,\
Box[1,2]-int(Box[1,5]/2)+exv:Box[1,2]+int(Box[1,5]/2)-exv,:];
croppedData4DL_pcs=zoom(croppedData4DL_pcs,(dx/np.size(croppedData4DL_pcs,0),dy/np.size(croppedData4DL_pcs,1),dz/np.size(croppedData4DL_pcs,2),1),order=0);
croppedData4DL=zoom(croppedData4DL,(dx/np.size(croppedData4DL,0),dy/np.size(croppedData4DL,1),dz/np.size(croppedData4DL,2),1),order=0);
if kidneyNone==0:
d=np.concatenate((croppedData4DL[np.newaxis,:,:,:,:],croppedData4DL[np.newaxis,:,:,:,:]),axis=0);
dpcs=np.concatenate((croppedData4DL_pcs[np.newaxis,:,:,:,:],croppedData4DL_pcs[np.newaxis,:,:,:,:]),axis=0);
elif kidneyNone==1:
d=np.concatenate((croppedData4DR[np.newaxis,:,:,:,:],croppedData4DR[np.newaxis,:,:,:,:]),axis=0);
dpcs=np.concatenate((croppedData4DR_pcs[np.newaxis,:,:,:,:],croppedData4DR_pcs[np.newaxis,:,:,:,:]),axis=0);
else:
d=np.concatenate((croppedData4DR[np.newaxis,:,:,:,:],croppedData4DL[np.newaxis,:,:,:,:]),axis=0);
dpcs=np.concatenate((croppedData4DR_pcs[np.newaxis,:,:,:,:],croppedData4DL_pcs[np.newaxis,:,:,:,:]),axis=0);
d=d/d.max()
dpcs=dpcs/dpcs.max();
sc=0; n_channels = tDim;
DataCroppedTest=np.zeros((2,dx,dy,dz,n_channels));
DataCroppedTest[2*sc:2*sc+2,:,:,:,:]=dpcs;
#address to segmentation model
#fileNumModel='Net'+net+'_time'+str(tDim)+'_pcUsed'+str(PcUsed)+'_tpUsed'+str(tpUsed)+'_DR'+str(deepRed)+'_testSet'+str(TestSetNum);
#address = "path-to-folder-containing-trained-segmentation-model(s)/"+fileNumModel+"/"
address = "path-to-folder-to-hold-segmentation-model(s)" + "/NettNet_time5_pcUsed1_tpUsed50_DR0_testSet1/"
#address = "path-to-folder-to-hold-segmentation-model(s)" + "/NettNet_time5_pcUsed1_tpUsed50_DR0_testSet2/"
#choose relevant segmentation model
n_classes = 2; # kidney, non-kidney
networkToUse = params['networkToUseSegment'];
if networkToUse == 'tNet':
model = get_denseNet103(dx,dz,n_channels,n_classes,deepRed,0);
elif networkToUse == 'denseNet':
model = get_denseNet(dx,dz,n_channels,n_classes,deepRed,0);
elif networkToUse == 'Unet':
model = get_unet3(dx,dz,n_channels,n_classes,deepRed,0);
if networkToUse == 'rbUnet':
model = get_rbunet(dx,dz,n_channels,n_classes,deepRed,0);
#load segmentation model weights
selectedEpoch=params['selectedEpochSegment'];
model.load_weights(address+'croppedSeg3D_'+selectedEpoch+'.h5');
cropped_mask_test = model.predict(DataCroppedTest, verbose=1)
if cropped_mask_test.min()<0:
cropped_mask_test=abs(cropped_mask_test.min())+cropped_mask_test;
imgs_mask_test2=np.copy(cropped_mask_test);
imgs_mask_test2[:,:,:,:,0]=cropped_mask_test[:,:,:,:,0];
imgs_mask_test2[:,:,:,:,1]=cropped_mask_test[:,:,:,:,1];
labels_pred_2=np.argmax(imgs_mask_test2, axis=4);
xyDim=224;
predMaskR=np.zeros((1,xyDim,xyDim,zDimOri));
predMaskL=np.zeros((1,xyDim,xyDim,zDimOri));
if kidneyNone!=0:
Rk=labels_pred_2[2*sc,:,:,:]
croppedData4DR=signal.resample(Rk,Box[0,3], t=None, axis=0);
croppedData4DR=signal.resample(croppedData4DR,Box[0,4], t=None, axis=1);
croppedData4DR=signal.resample(croppedData4DR,Box[0,5], t=None, axis=2);
croppedData4DR[croppedData4DR>0.5]=2;croppedData4DR[croppedData4DR<0.5]=0
croppedData4DR[croppedData4DR==0]=1;croppedData4DR[croppedData4DR==2]=0
predMaskR[sc,int(Box[0,0]-Box[0,3]/2):int(Box[0,0]+Box[0,3]/2),\
int(Box[0,1]-Box[0,4]/2):int(Box[0,1]+Box[0,4]/2),\
int(Box[0,2]-Box[0,5]/2):int(Box[0,2]+Box[0,5]/2)]=croppedData4DR;
if kidneyNone!=1:
Lk=labels_pred_2[2*sc+1,:,:,:]
croppedData4DL=signal.resample(Lk,Box[1,3], t=None, axis=0);
croppedData4DL=signal.resample(croppedData4DL,Box[1,4], t=None, axis=1);
croppedData4DL=signal.resample(croppedData4DL,Box[1,5], t=None, axis=2);
croppedData4DL[croppedData4DL>0.5]=2; croppedData4DL[croppedData4DL<0.5]=0
croppedData4DL[croppedData4DL==0]=1;croppedData4DL[croppedData4DL==2]=0
predMaskL[sc,int(Box[1,0]-Box[1,3]/2):int(Box[1,0]+Box[1,3]/2),\
int(Box[1,1]-Box[1,4]/2):int(Box[1,1]+Box[1,4]/2),\
int(Box[1,2]-Box[1,5]/2):int(Box[1,2]+Box[1,5]/2)]=croppedData4DL;
if np.sum(predMaskR) != 0:
predMaskL=morphology.remove_small_objects(predMaskL.astype(bool), min_size=256,in_place=True).astype(int);
if np.sum(predMaskL) != 0:
predMaskR=morphology.remove_small_objects(predMaskR.astype(bool), min_size=256,in_place=True).astype(int);
predMaskL2=np.copy(predMaskL);
#predMaskL2[predMaskL2==1]=2;
Masks2Save={};
predMaskR2=zoom(predMaskR[sc,:,:,:],(1,1,1),order=0);
predMaskL2=zoom(predMaskL[sc,:,:,:],(1,1,1),order=0);
maskSegment = predMaskR2 + predMaskL2;
Masks2Save['R']=np.copy(predMaskR2.astype(float));
Masks2Save['L']=np.copy(predMaskL2.astype(float));
funcs_gh.writeMasks(pName,subjectInfo,reconMethod,Masks2Save,1);
return maskSegment
# path to .xls sheet that contains time information for each test subject file (pName)
fileAddress='path-to-folder"+"/subjectDicomInfo_gh.xls';
subjectInfo=pd.read_excel(fileAddress, sheetname=0);
reconMethod='SCAN';
params={};
params['TestSetNum']=1; #0
params['tpUsed']= 50;
params['tDim']= params['tpUsed'];
params['PcUsed']= 1; #0
params['deepReduction']= 0;
params['networkToUseDetect']= 'rbUnet' #'denseNet'; #'tNet'; #'Unet'
params['networkToUseSegment']= 'tNet' #'denseNet'; #'Unet'; #'rbUnet'
params['selectedEpochDetect']='enter-number';
params['selectedEpochSegment']='enter-number';
if params['PcUsed']== 1:
tDim=5;
params['tDim']= tDim;
TestSetNum = 1; #2
_,subjectNamesNormalTest,_,testKidCondTest,subjectNamesNormalTestBaselines=selectTrainAndTestSubjects(TestSetNum);
#subjectTrain,subjectTest,subjectTrainKidneyCondition,subjectTestKidneyCondition,subjectTestBaselines
# perform segmentation on a set of test subject files (subjectNamesNormalTest)
# or perform segmentation on an individual test subject file
for s in range(len(subjectNamesNormalTest)):
#for s in range(1):
pName = subjectNamesNormalTest[s];
baseline = subjectNamesNormalTestBaselines[s]
#pName = 'image_file_name';
#baseline = '8'; funcs_gh.baselineFinder2(pName,subjectInfo);
print(pName)
pathToFolderD = "path-to-folder-to-contain-detected-image-files"+"/detected/" + pName + '_seq1'
if not os.path.exists(pathToFolderD):
os.makedirs(pathToFolderD)
pathToFolder = "path-to-folder-to-contain-segmented-image-files"+"/segmented/" + pName + '_seq1'
if not os.path.exists(pathToFolder):
os.makedirs(pathToFolder)
# perform coarse segmentation (maskDetect) using detection model
# and generate bounding box for each kidney (boxDetect)
# and save coarse segmentation (detection) labels to a file
maskDetect, boxDetect, kidneyNone, vol4D0, vol4Dpcs, zDimOri = singlePatientDetection(pName,subjectInfo, int(baseline),params);
# perform segmentation (maskSegment) using segmentation model
# and save to a file
maskSegment = singlePatientSegmentation(params, pName,subjectInfo, maskDetect, boxDetect, kidneyNone, vol4D0, vol4Dpcs, zDimOri);