-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
278 lines (212 loc) · 7.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import random
import re
import time
from skimage import color
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal
from tqdm import tqdm
class eval_mode:
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(tau * param.data +
(1 - tau) * target_param.data)
def to_torch(xs, device):
return tuple(torch.as_tensor(x, device=device) for x in xs)
def weight_init(m):
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data, gain)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
class Until:
def __init__(self, until, action_repeat=1):
self._until = until
self._action_repeat = action_repeat
def __call__(self, step):
if self._until is None:
return True
until = self._until // self._action_repeat
return step < until
class Every:
def __init__(self, every, action_repeat=1):
self._every = every
self._action_repeat = action_repeat
def __call__(self, step):
if self._every is None:
return False
every = self._every // self._action_repeat
if step % every == 0:
return True
return False
class Timer:
def __init__(self):
self._start_time = time.time()
self._last_time = time.time()
def reset(self):
elapsed_time = time.time() - self._last_time
self._last_time = time.time()
total_time = time.time() - self._start_time
return elapsed_time, total_time
def total_time(self):
return time.time() - self._start_time
class TruncatedNormal(pyd.Normal):
def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6):
super().__init__(loc, scale, validate_args=False)
self.low = low
self.high = high
self.eps = eps
def _clamp(self, x):
clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps)
x = x - x.detach() + clamped_x.detach()
return x
def sample(self, clip=None, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = _standard_normal(shape,
dtype=self.loc.dtype,
device=self.loc.device)
eps *= self.scale
if clip is not None:
eps = torch.clamp(eps, -clip, clip)
x = self.loc + eps
return self._clamp(x)
def schedule(schdl, step):
try:
return float(schdl)
except ValueError:
match = re.match(r'linear\((.+),(.+),(.+)\)', schdl)
if match:
init, final, duration = [float(g) for g in match.groups()]
mix = np.clip(step / duration, 0.0, 1.0)
return (1.0 - mix) * init + mix * final
match = re.match(r'step_linear\((.+),(.+),(.+),(.+),(.+)\)', schdl)
if match:
init, final1, duration1, final2, duration2 = [
float(g) for g in match.groups()
]
if step <= duration1:
mix = np.clip(step / duration1, 0.0, 1.0)
return (1.0 - mix) * init + mix * final1
else:
mix = np.clip((step - duration1) / duration2, 0.0, 1.0)
return (1.0 - mix) * final1 + mix * final2
raise NotImplementedError(schdl)
def device():
return torch.device(f'cuda:{torch.cuda.device_count() -1}') if torch.cuda.is_available() else torch.device('cpu')
def generate_video_from_expert(root_dir, expert, env, context_changer, cam_ids, num=800, num_valid=None, im_w=64, im_h=64):
root_dir = Path(root_dir)
root_dir.mkdir(parents=True, exist_ok=True)
expert.train(training=False)
def act(time_step):
action = expert.act(time_step.observation, 1, eval_mode=True)
return action
def make_video(parent_dir):
cameras = {id: [] for id in cam_ids}
context_changer.reset()
time_step = env.reset()
with change_context(env, context_changer):
for cam_id, cam in cameras.items():
cam.append(env.physics.render(im_w, im_h, camera_id=cam_id))
while not time_step.last():
action = act(time_step)
time_step = env.step(action)
with change_context(env, context_changer):
for cam_id, cam in cameras.items():
cam.append(env.physics.render(im_w, im_h, camera_id=cam_id))
videos = np.array(list(cameras.values()), dtype=np.uint8)
np.save(parent_dir / f'{int(time.time()*1000)}', videos)
with torch.no_grad():
if num_valid is not None:
video_dir = root_dir / 'train'
video_dir.mkdir(exist_ok=True)
for _ in tqdm(range(num)):
make_video(video_dir)
video_dir = root_dir / 'valid'
video_dir.mkdir(exist_ok=True)
for _ in tqdm(range(num_valid)):
make_video(video_dir)
else:
for _ in tqdm(range(num)):
make_video(root_dir)
class change_context:
def __init__(self, env, context_changer):
self.env = env
self.context_changer = context_changer
def __enter__(self):
self.context_changer.change_env(self.env)
def __exit__(self, exc_type, exc_val, exc_tb):
self.context_changer.reset_env(self.env)
def normalize(data, mean, std, eps=1e-8):
if type(mean) == list:
mean = np.array(mean, dtype=np.float32)
if type(std) == list:
std = np.array(std, dtype=np.float32)
return (data - mean) / (std + eps)
def unnormalize(data, mean, std):
return data * std + mean
class RGB2Lab(object):
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2lab(img)
return img
class Lab2RGB(object):
def __call__(self, img):
img = color.lab2rgb(img) * 255.
img = np.asarray(img, np.uint8)
return img
def rgb_to_lab(img, normalize=True):
lab = RGB2Lab()
img = lab(img)
if normalize:
mean = np.array([(0 + 100) / 2, (-86.183 + 98.233) / 2, (-107.857 + 94.478) / 2])
std = np.array([(100 - 0) / 2, (86.183 + 98.233) / 2, (107.857 + 94.478) / 2])
img = (img - mean) / std
return img
def lab_to_rgb(img):
rgb = Lab2RGB()
return rgb(img)
class RandomAgent:
def __init__(self, env):
self.env = env
self.training = None
def train(self, *args, **kwargs):
pass
def act(self, *args, **kwargs):
return random.uniform(self.env.action_spec().minimum, self.env.action_spec().maximum)
def eval(self, *args, **kwargs):
pass
def context_indices(T, context_width=1):
t = random.randint(0, T - 1)
c_list = list(range(max(t - context_width, 0), min(t + context_width + 1, T)))
c_list.remove(t)
nc_list = list(range(T))
nc_list.remove(t)
for i in c_list:
nc_list.remove(i)
c_t = random.choice(c_list)
nc_t = random.choice(nc_list)
return t, c_t, nc_t