-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdataset.py
113 lines (94 loc) · 4.01 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python3
import os
import cv2
import json
import numpy as np
from typing import Dict, List, Tuple
import torch
from torch.utils.data import Dataset
from lib.data_preprocess.preprocess import prepare_train_input, prepare_test_input
class DeepfakeDataset(Dataset):
r"""DeepfakeDataset Dataset.
The folder is expected to be organized as followed: root/cls/xxx.img_ext
Labels are indices of sorted classes in the root directory.
Args:
mode: train or test.
config: hypter parameters for processing images.
"""
def __init__(self, mode: str, config: dict):
super().__init__()
self.config = config
self.mode = mode
self.root = self.config['dataset']['img_path']
self.landmark_path = self.config['dataset']['ld_path']
self.rng = np.random
assert mode in ['train', 'test']
self.do_train = True if mode == 'train' else False
self.info_meta_dict = self.load_landmark_json(self.landmark_path)
self.class_dict = self.collect_class()
self.samples = self.collect_samples()
def load_landmark_json(self, landmark_json) -> Dict:
with open(landmark_json, 'r') as f:
landmark_dict = json.load(f)
return landmark_dict
def collect_samples(self) -> List:
samples = []
directory = os.path.expanduser(self.root)
for key in sorted(self.class_dict.keys()):
d = os.path.join(directory, key)
if not os.path.isdir(d):
continue
for r, _, filename in sorted(os.walk(d, followlinks=True)):
for name in sorted(filename):
path = os.path.join(r, name)
info_key = path[:-4]
video_name = '/'.join(path.split('/')[:-1])
info_meta = self.info_meta_dict[info_key]
landmark = info_meta['landmark']
class_label = int(info_meta['label'])
source_path = info_meta['source_path'] + path[-4:]
samples.append(
(path, {'labels': class_label, 'landmark': landmark,
'source_path': source_path,
'video_name': video_name})
)
return samples
def collect_class(self) -> Dict:
classes = [d.name for d in os.scandir(self.root) if d.is_dir()]
classes.sort(reverse=True)
return {classes[i]: np.int32(i) for i in range(len(classes))}
def __getitem__(self, index: int) -> Tuple:
path, label_meta = self.samples[index]
ld = np.array(label_meta['landmark'])
label = label_meta['labels']
source_path = label_meta['source_path']
img = cv2.imread(path, cv2.IMREAD_COLOR)
source_img = cv2.imread(source_path, cv2.IMREAD_COLOR)
if self.mode == "train":
img, label_dict = prepare_train_input(
img, source_img, ld, label, self.config, self.do_train
)
if isinstance(label_dict, str):
return None, label_dict
location_label = torch.Tensor(label_dict['location_label'])
confidence_label = torch.Tensor(label_dict['confidence_label'])
img = torch.Tensor(img.transpose(2, 0, 1))
return img, (label, location_label, confidence_label)
elif self.mode == 'test':
img, label_dict = prepare_test_input(
[img], ld, label, self.config
)
img = torch.Tensor(img[0].transpose(2, 0, 1))
video_name = label_meta['video_name']
return img, (label, video_name)
else:
raise ValueError("Unsupported mode of dataset!")
def __len__(self):
return len(self.samples)
if __name__ == "__main__":
from lib.util import load_config
config = load_config('./configs/caddm_train.cfg')
d = DeepfakeDataset(mode="test", config=config)
for index in range(len(d)):
res = d[index]
# vim: ts=4 sw=4 sts=4 expandtab