Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

> > > Hi, #142

Open
Vendulamrdka95 opened this issue Oct 1, 2023 · 1 comment
Open

> > > Hi, #142

Vendulamrdka95 opened this issue Oct 1, 2023 · 1 comment

Comments

@Vendulamrdka95
Copy link

          > > > Hi,

(1) When use mmdet1.0, have you notice here #71 (comment) . The reverse_angle must be False in GlobalRotScaleTransImage. (2) Yes, when set with_position=False, it's a result in ablation study. image
When set with_position=False, the intrinsics and extrinsics are not used in model. In fact, PETR can work without intrinsics and extrinsics, benefiting from global attention. The low performance is mainly due to ResizeCropFlipImage and GlobalRotScaleTransImage. These data augmentation greatly change the intrinsics and extrinsics during the training process, and the network can't overfit the parameters of the data set. Once these augmentations are removed, resnet50 should obtain the peformance more than 27% mAP. But we don't think it's meaningful to over-fit the dataset.

I have noticed StreamPETR still set reverse_angle=True but they use mmdet3d=1.0.0rc6, have I missed something?

The rotate matrix is different.

Thanks, got it. 👍

Originally posted by @xiaosu-zhu in #86 (comment)

@Vendulamrdka95
Copy link
Author

          > > > Hi,

(1) When use mmdet1.0, have you notice here #71 (comment) . The reverse_angle must be False in GlobalRotScaleTransImage. (2) Yes, when set with_position=False, it's a result in ablation study. image
When set with_position=False, the intrinsics and extrinsics are not used in model. In fact, PETR can work without intrinsics and extrinsics, benefiting from global attention. The low performance is mainly due to ResizeCropFlipImage and GlobalRotScaleTransImage. These data augmentation greatly change the intrinsics and extrinsics during the training process, and the network can't overfit the parameters of the data set. Once these augmentations are removed, resnet50 should obtain the peformance more than 27% mAP. But we don't think it's meaningful to over-fit the dataset.

I have noticed StreamPETR still set reverse_angle=True but they use mmdet3d=1.0.0rc6, have I missed something?

The rotate matrix is different.

Thanks, got it. 👍

Originally posted by @xiaosu-zhu in #86 (comment)

          > > > Hi,

(1) When use mmdet1.0, have you notice here #71 (comment) . The reverse_angle must be False in GlobalRotScaleTransImage. (2) Yes, when set with_position=False, it's a result in ablation study. image
When set with_position=False, the intrinsics and extrinsics are not used in model. In fact, PETR can work without intrinsics and extrinsics, benefiting from global attention. The low performance is mainly due to ResizeCropFlipImage and GlobalRotScaleTransImage. These data augmentation greatly change the intrinsics and extrinsics during the training process, and the network can't overfit the parameters of the data set. Once these augmentations are removed, resnet50 should obtain the peformance more than 27% mAP. But we don't think it's meaningful to over-fit the dataset.

I have noticed StreamPETR still set reverse_angle=True but they use mmdet3d=1.0.0rc6, have I missed something?

The rotate matrix is different.

Thanks, got it. 👍

Originally posted by @xiaosu-zhu in #86 (comment)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant