-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanswer.py
103 lines (69 loc) · 3.75 KB
/
answer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# the write_and_run function writes the content in this cell into the file "feature_map.py"
### WRITE YOUR CODE BETWEEN THESE LINES - START
# import libraries that are used in the function below.
from qiskit import QuantumCircuit
from qiskit.circuit import ParameterVector
from qiskit.circuit.library import ZZFeatureMap, ZFeatureMap, PauliFeatureMap
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
### WRITE YOUR CODE BETWEEN THESE LINES - END
def feature_map():
# BUILD FEATURE MAP HERE - START
# import required qiskit libraries if additional libraries are required
np.random.seed(0)
weights = np.random.rand(2,2,3) # 2 qubits, 2 layers, 3 weights in each layer
qc= QuantumCircuit(2)
qc.u3(training_set[0][0],training_set[0][1],0,0)
qc.u3(training_set[0][0],training_set[0][1],0,1)
qc.u3(weights[0][0][0],weights[0][0][1],weights[0][0][2],0)
qc.u3(weights[1][0][0],weights[1][0][1],weights[1][0][2],1)
qc.cz(0,1)
qc.u3(training_set[0][0],training_set[0][1],0,0)
qc.u3(training_set[0][0],training_set[0][1],0,1)
qc.u3(weights[0][1][0],weights[0][1][1],weights[0][1][2],0)
qc.u3(weights[1][1][0],weights[1][1][1],weights[1][1][2],1)
#num_qubits = 3
#reps = 1 # number of times you'd want to repeat the circuit
#x = ParameterVector('x', length=num_qubits) # creating a list of Parameters
#feature_map = QuantumCircuit(num_qubits)
# defining our parametric form
#for _ in range(reps):
# for i in range(num_qubits):
# feature_map.rx(x[i], i)
# for i in range(num_qubits):
# for j in range(i + 1, num_qubits):
# feature_map.cx(i,j)
# BUILD FEATURE MAP HERE - END
#return the feature map which is either a FeatureMap or QuantumCircuit object
return feature_map
# the write_and_run function writes the content in this cell into the file "variational_circuit.py"
### WRITE YOUR CODE BETWEEN THESE LINES - START
# import libraries that are used in the function below.
from qiskit import QuantumCircuit
from qiskit.circuit import ParameterVector
from qiskit.circuit.library import RealAmplitudes, EfficientSU2, TwoLocal
### WRITE YOUR CODE BETWEEN THESE LINES - END
def variational_circuit():
# BUILD VARIATIONAL CIRCUIT HERE - START
# import required qiskit libraries if additional libraries are required
# build the variational circuit
var_circuit = EfficientSU2(3, entanglement='full', reps=4)
# BUILD VARIATIONAL CIRCUIT HERE - END
# return the variational circuit which is either a VaritionalForm or QuantumCircuit object
return var_circuit
# # the write_and_run function writes the content in this cell into the file "optimal_params.py"
### WRITE YOUR CODE BETWEEN THESE LINES - START
# import libraries that are used in the function below.
import numpy as np
### WRITE YOUR CODE BETWEEN THESE LINES - END
def return_optimal_params():
# STORE THE OPTIMAL PARAMETERS AS AN ARRAY IN THE VARIABLE optimal_parameters
optimal_parameters =[ 1.23794261e+00, -6.05284490e-01, -8.45595458e-01, -6.15462673e-01,
-2.11647697e+00, -1.28206956e-01, 2.69102247e-01, -8.05780497e-01,
-1.61144291e+00, 1.19445826e+00, -6.54716349e-01, 1.67773617e+00,
-8.38864624e-01, 1.68450798e+00, 1.55359638e-01, -1.11879663e+00,
-8.40470191e-01, 1.81922255e+00, 4.32943964e-01, 6.24630427e-01,
8.18335290e-01, -2.75627849e-02, 5.78596149e-01, 1.65019934e-03,
-7.22121555e-01, -4.09009221e-01, 5.49457358e-02, 1.21729358e+00,
-3.30963915e-01, 5.09766280e-01]
# STORE THE OPTIMAL PARAMETERS AS AN ARRAY IN THE VARIABLE optimal_parameters
return np.array(optimal_parameters)