forked from mattdutson/xview2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
151 lines (118 loc) · 5.03 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.layers import *
mask_colors = {
1: [0, 255, 0],
2: [255, 255, 0],
3: [255, 127, 0],
4: [255, 0, 0]
}
def read_png(filename):
return tf.image.decode_png(tf.io.read_file(filename))
def write_png(array, filename):
tf.io.write_file(filename, tf.image.encode_png(array))
def overlay_mask(base, mask):
mask_np = mask.numpy()
output = np.copy(base)
for i in range(output.shape[0]):
for j in range(output.shape[1]):
mask_val = mask_np[i, j]
if mask_val != 0:
output[i, j] = mask_colors[mask_val]
return output
def harmonic_mean(items):
inv_sum = 0.0
for item in items:
inv_sum += (item + 1e-6) ** -1
return len(items) / inv_sum
class WeightedCrossEntropy:
# class_weights should be a Numpy array
def __init__(self, class_weights):
self.class_weights = tf.convert_to_tensor(class_weights, dtype=tf.float32)
def __call__(self, y_true, y_pred, sample_weight=None):
y_true = tf.stop_gradient(y_true)
pixel_losses = tf.keras.losses.categorical_crossentropy(y_true, y_pred)
pixel_weights = tf.reduce_mean(self.class_weights * y_true, axis=-1)
mean_loss = tf.reduce_mean(pixel_weights * pixel_losses)
return mean_loss
class SaveOutput(Callback):
def __init__(self, gen, output_dir, n_items=50):
self.gen = gen
self.output_dir = output_dir
self.n_items = n_items
def set_model(self, model):
self.model = model
def on_epoch_end(self, epoch, logs):
for i in range(self.n_items):
item = self.gen[i]
pre_post = item[0]
pre = pre_post[0, :, :, :3]
pre = tf.cast(pre * 255.0, tf.uint8)
write_png(pre, os.path.join(self.output_dir, "{}_{}_pre.png".format(epoch, i)))
post = pre_post[0, :, :, 3:]
post = tf.cast(post * 255.0, tf.uint8)
write_png(post, os.path.join(self.output_dir, "{}_{}_post.png".format(epoch, i)))
true = item[1][0]
true = tf.argmax(true, axis=-1)
true = overlay_mask(post, true)
true = tf.cast(true, tf.uint8)
write_png(true, os.path.join(self.output_dir, "{}_{}_true.png".format(epoch, i)))
pred = self.model.predict(pre_post)[0, :, :, :]
pred = tf.argmax(pred, axis=-1)
pred = overlay_mask(post, pred)
pred = tf.cast(pred, tf.uint8)
write_png(pred, os.path.join(self.output_dir, "{}_{}_pred.png".format(epoch, i)))
class PrintXViewMetrics(Callback):
def __init__(self, n_classes=5):
self.n_classes = n_classes
def on_epoch_end(self, _, logs):
f1 = []
val_f1 = []
for i in range(self.n_classes):
p = logs.get("p_{}".format(i))
r = logs.get("r_{}".format(i))
val_p = logs.get("val_p_{}".format(i))
val_r = logs.get("val_r_{}".format(i))
f1.append(harmonic_mean([p, r]))
if val_p is not None and val_r is not None:
val_f1.append(harmonic_mean([val_p, val_r]))
loc = f1[1]
print()
print("loc: {:.4f}".format(loc))
if self.n_classes > 2:
damage = harmonic_mean(f1[1:])
print("damage: {:.4f}".format(damage))
print("xview2: {:.4f}".format(0.3 * loc + 0.7 * damage))
if len(val_f1) > 0:
val_loc = val_f1[1]
print("val_loc: {:.4f}".format(val_loc))
if self.n_classes > 2:
val_damage = harmonic_mean(val_f1[1:])
print("val_damage: {:.4f}".format(val_damage))
print("val_xview2: {:.4f}".format(0.3 * val_loc + 0.7 * val_damage))
class TrainValTensorBoard(TensorBoard):
def __init__(self, log_dir='./logs', **kwargs):
train_dir = os.path.join(log_dir, 'training')
super(TrainValTensorBoard, self).__init__(train_dir, **kwargs)
self.val_dir = os.path.join(log_dir, 'validation')
def set_model(self, model):
self.val_writer = tf.summary.create_file_writer(self.val_dir)
super(TrainValTensorBoard, self).set_model(model)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
validation_logs = {k.replace('val_', ''): v for k, v in logs.items() if k.startswith('val_')}
for name, value in validation_logs.items():
summary = tf.Summary()
summary_value = summary.value.add()
summary_value.simple_value = value.item()
summary_value.tag = name
self.val_writer.add_summary(summary, epoch)
self.val_writer.flush()
logs = {k: v for k, v in logs.items() if not k.startswith('val_')}
super(TrainValTensorBoard, self).on_epoch_end(epoch, logs)
def on_train_end(self, logs=None):
super(TrainValTensorBoard, self).on_train_end(logs)
self.val_writer.close()