-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
79 lines (63 loc) · 3.01 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import os
import csv
import copy
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from collections import defaultdict
from dataset import TestDataset
from utils import get_performance
import network
def run_test(args):
test_dataset = TestDataset(csv_file=args.test_csv, input_shape=args.input_shape)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=64, pin_memory=True)
print('Number of test images:', len(test_loader.dataset))
model = torch.nn.DataParallel(network.AEMAD(in_channels=3, features_root=args.features_root))
model.load_state_dict(torch.load(args.model_path, map_location=torch.device('cpu')))
model.cuda()
model.eval()
mse_criterion = torch.nn.MSELoss(reduction='none').cuda()
test_scores, gt_labels, test_scores_dict = [], [],[]
with torch.no_grad():
for i, data in enumerate(tqdm(test_loader)):
raw, labels, img_ids = data['images'].cuda(), data['labels'], data['img_path']
_, output_raw = model(raw)
scores = mse_criterion(output_raw, raw).cpu().data.numpy()
scores = np.sum(np.sum(np.sum(scores, axis=3), axis=2), axis=1)
test_scores.extend(scores)
gt_labels.extend((1 - labels.data.numpy()))
for j in range(labels.shape[0]):
l = 'attack' if labels[j].detach().numpy() == 1 else 'bonafide'
test_scores_dict.append({'img_path':img_ids[j], 'labels':l, 'prediction_score':float(scores[j])})
eer, eer_th = get_performance(test_scores, gt_labels)
print('Test EER:', eer*100)
with open(args.output_path, mode='w') as csv_file:
fieldnames = ['img_path', 'labels', 'prediction_score']
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for d in test_scores_dict:
writer.writerow(d)
print('Prediction scores write done in', args.output_path)
if __name__ == "__main__":
torch.cuda.empty_cache()
cudnn.benchmark = True
if torch.cuda.is_available():
print('GPU is available')
torch.cuda.manual_seed(0)
else:
print('GPU is not available')
torch.manual_seed(0)
import argparse
parser = argparse.ArgumentParser(description='SPL MAD')
parser.add_argument("--test_csv", required=True, type=str, help="path of data directory including csv files")
parser.add_argument("--model_path", required=True, type=str, help="model path")
parser.add_argument("--output_path", default='test.csv', type=str, help="path for output prediction scores")
parser.add_argument("--input_shape", default=(224, 224), type=tuple, help="model input shape")
parser.add_argument("--features_root", default=64, type=int, help="feature root")
parser.add_argument("--batch_size", default=32, type=int, help="test batch size")
args = parser.parse_args()
run_test(args=args)