-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
60 lines (51 loc) · 1.69 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import os
import sys
from setuptools import setup, find_packages
if sys.argv[-1] == 'publish':
os.system('python setup.py sdist upload')
sys.exit()
with open(os.path.join(os.path.dirname(__file__), 'README.md')) as f:
readme = f.read()
packages = find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"])
print("packages: {}".format(packages))
package_data = {
}
with open(os.path.join(os.path.dirname(__file__), 'requirements.txt')) as f:
requirements = f.readlines()
classifiers = [
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Science/Research',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 2.7',
]
setup(
name='parallelDG',
python_requires='<3.0',
version=0.4,
description='Parallel Bayesian structure learning in decomposable graphical models.',
long_description=readme,
packages=packages,
package_data=package_data,
install_requires=requirements,
scripts=[
"bin/parallelDG_ggm_sample",
"bin/parallelDG_loglinear_sample",
"bin/gen_g-intraclass_precmat",
"bin/analyze_graph_trajectories",
"bin/mh_ggm_sample",
"bin/sample_g-inv_wish",
"bin/sample_ggm_AR_data",
"bin/sample_ggm_intraclass_data",
"bin/sample_loglinear_data",
"bin/sample_loglinear_parameters",
"bin/sample_normal_data"],
author="Mohamad Elmasri",
author_email='mohamad.elmasri@utoronto.ca',
url='https://github.com/melmasri/parallelDG',
download_url = '',
license='Apache 2.0',
classifiers=classifiers,
)