-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path.Rhistory
512 lines (512 loc) · 23.3 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
)
any(duplicated((ranking_df$syndromic$RankAllAvg))
)
sum(duplicated((ranking_df$syndromic$RankAllAvg)))
head((ranking_df$syndromic$RankAllAvg[order((ranking_df$syndromic$RankAllAvg)], 50)
head(ranking_df$syndromic$RankAllAvg[order((ranking_df$syndromic$RankAllAvg)], 50)
head(ranking_df$syndromic$RankAllAvg[order(ranking_df$syndromic$RankAllAvg)], 50)
rank_select = ranking_df$syndromic %>% group_by(RankAllAvg) %>% arrange()
head(rank_select)
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg)
head(rank_select)
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate)
head(rank_select)
rank_vals = rank_select$RankAllAvg
rank_labs = rank_selectc$trueset
rank_labs = rank_select$trueset
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate, cumsum = cumsum(trueset))
head(rank_select)
ggplot(rank_select, aes(x = RankAllAvg, y = cumsum))
ggplot(rank_select, aes(x = RankAllAvg, y = cumsum)) + geom_point()
ggplot(rank_select, aes(x = RankAllAvg, y = cumsum)) + geom_point() + scale_x_log10()
ggplot(rank_select, aes(x = RankAllAvg, y = cumsum)) + geom_point() + scale_x_log10() + scale_y_log10()
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate, cumsum = cumsum(anyknown))
ggplot(rank_select, aes(x = RankAllAvg, y = cumsum)) + geom_point() + scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = RankAllAvg, y = cumsum)) + geom_point() #+ scale_x_log10() + scale_y_log10()
# TPR rate against diffferent ranking system
refset = "anyknown"
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate, cumsum = cumsum(!!refset), TPR = cumsum/RankAllAvg)
head(rank_select)
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate, cumsum = cumsum(!!!refset), TPR = cumsum/RankAllAvg)
head(rank_select)
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate, cumsum = cumsum(refset), TPR = cumsum/RankAllAvg)
rank_select = ranking_df$syndromic %>% arrange(RankAllAvg) %>% mutate(anyknown = trueset|candidate, cumsum = cumsum(get(refset)), TPR = cumsum/RankAllAvg)
head(rank_select)
ggplot(rank_select, aes(x = RankAllAvg, y = TPR)) + geom_point() #+ scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = RankAllAvg, y = TPR)) + geom_point() + scale_x_log10() #+ scale_y_log10()
rank_criteria = "RankAllAvg"
rank_criteria = "RankAllAvg"
rank_select = ranking_df$syndromic %>% arrange(get(rank_criteria)) %>%
mutate(anyknown = trueset|candidate, # count both known genes and candidate genes
cumsum = cumsum(get(refset)), # cumulative sum of true ref sets
TPR = cumsum/get(rank_criteria)) #true positive based on ranking system used
head(rank_select)
ggplot(rank_select, aes(x = get(rank_criteria), y = cumsum)) + geom_point() #+ scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(input$rank_criteria), y = cumsum)) + geom_point() #+ scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = cumsum)) + geom_point() #+ scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = TPR)) + geom_point()
ggplot(rank_select, aes(x = get(input$rank_criteria), y = TPR)) + geom_point() + scale_x_log10()
ggplot(rank_select, aes(x = get(irank_criteria), y = TPR)) + geom_point() + scale_x_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = TPR)) + geom_point() + scale_x_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = cumsum)) + geom_point() #+ scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = cumsum)) + geom_point() + scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = cumsum)) + geom_point(aes(fill = get(rank_criteria)==200)) + scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = cumsum)) + geom_point(aes(col = get(rank_criteria)==200)) + scale_x_log10() + scale_y_log10()
ggplot(rank_select, aes(x = get(rank_criteria), y = TPR)) + geom_point() + scale_x_log10()
runApp()
runApp()
runApp()
runApp()
runApp()
runApp()
runApp()
runApp()
runApp()
runApp()
a = ranking_df$syndromic %>% dplyr::filter(RankAllAvg <= 100)
head(a)
a %>% group_by(trueset, candidate) %>% summarise(paste(GeneName, collapse = "; "))
a %>% group_by(trueset, candidate) %>% summarise(n = length(GeneName), genes = paste(GeneName, collapse = "; "))
a %>% group_by(trueset, candidate) %>% summarise(n = length(GeneName), genes = paste(GeneName, collapse = "; "), allgenes = GeneName)
a %>% group_by(trueset, candidate) %>% summarise(n = length(GeneName), genes = paste(GeneName, collapse = "; "), allgenes = c(GeneName))
a %>% group_by(trueset, candidate) %>% summarise(n = length(GeneName), genes = paste(GeneName, collapse = "; "), allgenes = list(GeneName))
runApp()
runApp()
runApp()
library(reticulate)
a %>% group_by(trueset, candidate) %>% summarise(n = length(GeneName), genes = paste(GeneName, collapse = "; "), allgenes = list(GeneName))
a %>% group_by(trueset, candidate) %>% summarise(n = length(GeneName), genes = paste(GeneName, collapse = "; "), allgenes = list(GeneName)) -> b
b %>% dplyr::filter(!trueset & !candidate) %>% pull(allgenes)
b %>% dplyr::filter(!trueset & !candidate) %>% pull(allgenes) %>% unlist %>% paste(., collapse = "\n")
b %>% dplyr::filter(!trueset & !candidate) %>% pull(allgenes) %>% unlist %>% paste(., collapse = "\n") -> genes_str
genes_str
json = import('json')
requests = import('requests')
requests = import('requests')
requests = import('requests.py')
os = import("os")
os$listdir("")
os$listdir()
os$listdir(".")
py_available()
py_config()
requests = import('requests')
library(reticulate)
requests = import('requests')
dict(list = c(NULL, genes_str),
description = c(NULL, description))
description = 'Tomi top genes'
ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/addList'
payload = dict(list = c(NULL, genes_str),
description = c(NULL, description))
payload
dict(list = c(None, genes_str),
description = c(None, description))
tuple(NULL, 'a')
payload = dict(list = tuple(NULL, genes_str),
description = tuple(NULL, description))
payload
reticulate::use_python(python = '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3', required = T)
reticulate::use_python(python = '/Users/pbuphamalai/anaconda3/bin/python3', required = T)
reticulate::use_python(python = '/Users/pbuphamalai/anaconda3/bin/python3', required = T)
json = import('json')
library(reticulate)
library(pacman)
library(DT)
library(tidyverse)
library(ROCit)
library(plotly)
library(reticulate)
sys <- import("sys")
sys$version
requests = import('requests')
json = import('json')
requests = import('requests')
ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/addList'
payload
payload = dict(list = tuple(NULL, genes_str),
description = tuple(NULL, description))
payload
response = requests$post(ENRICHR_URL, files = payload)
response
data = json$load(response$text)
response$text
data = json$loads(response$text)
data
data$shortId
a("Google Homepage", href="https://www.google.com/")
a(h4("Open Link"), target = "_blank", href = paste0("http://www.somesite/", some_link))
uiOutput(a(h4("Open Link"), target = "_blank", href = paste0("http://www.somesite/", some_link)))
library(shiny)
uiOutput(a(h4("Open Link"), target = "_blank", href = paste0("http://www.somesite/", some_link)))
uiOutput(a(h4("Open Link"), target = "_blank", href = paste0("http://www.somesite/", "abc")))
uiOutput(shiny::a(h4("Open Link", class = "btn btn-default action-button" ,
style = "fontweight:600"), target = "_blank",
href = paste0("http://www.somesite/", "abc")))
# use reticulate to retrieve API for enrichR
output$enrichr_url = renderUI(
{
json = import('json')
requests = import('requests')
ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/addList'
# new genes to be discovered
genes_str = filtered_rank() %>% dplyr::filter(!trueset & !candidate) %>% pull(allgenes) %>% unlist %>% paste(., collapse = "\n")
description = 'Tomi top genes'
payload = dict(list = tuple(NULL, genes_str),
description = tuple(NULL, description))
response = requests$post(ENRICHR_URL, files = payload)
data = json$loads(response$text)
url = paste0("http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=",data$shortId)
tagList("URL link:", url)
}
)
renderUI(
{
json = import('json')
requests = import('requests')
ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/addList'
# new genes to be discovered
genes_str = "ABCB1"#filtered_rank() %>% dplyr::filter(!trueset & !candidate) %>% pull(allgenes) %>% unlist %>% paste(., collapse = "\n")
description = 'Tomi top genes'
payload = dict(list = tuple(NULL, genes_str),
description = tuple(NULL, description))
response = requests$post(ENRICHR_URL, files = payload)
data = json$loads(response$text)
url = paste0("http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=",data$shortId)
tagList("URL link:", url)
}
)
runApp()
runApp()
runApp()
install.packages(shinyjs)
install.packages("shinyjs")
runApp()
runApp()
runApp()
?eventReactive()
runApp()
runApp()
runApp()
runApp()
runApp()
runApp()
shiny::runApp()
librart
library("reticulate")
py_config()
shiny::runApp()
runApp()
runApp()
Sys.getenv("PATH")
runApp()
runApp()
pacman::p_load("vcfR")
my_vcf = read.vcfR("~/Documents/projects/myDNA/data/0820188482964.filtered.snp.vcf.gz", verbose = FALSE )
my_vcf = read.vcfR("~/Documents/projects/myDNA/data/60820188482964.filtered.snp.vcf.gz", verbose = FALSE )
head(my_vcf)
chrom <- create.chromR(name='Supercontig', vcf=my_vcf)
vcf_df = as_tibble(head(my_vcf))
vcf_df
my_vcf[1]
names(my_vcf)
length(my_vcf)
my_vcf[1:5]
my_vcf[1:5] %>% tibble()
my_vcf[1:5] %>% as.data.frame()
head(my_vcf@fix)
head(my_vcf@gt)
vcf_df = my_vcf@gt[,2]
strsplit("0/1:21,4:0.16:25:8,4:13,0:16:50,0,47:15.513,0.12382,49.774:0,34.77,37.77:9,12,3,1:8,13,3,1", ":")
strsplit("0/1:21,4:0.16:25:8,4:13,0:16:50,0,47:15.513,0.12382,49.774:0,34.77,37.77:9,12,3,1:8,13,3,1", ":")[[1]][4]
as.integer(strsplit("0/1:21,4:0.16:25:8,4:13,0:16:50,0,47:15.513,0.12382,49.774:0,34.77,37.77:9,12,3,1:8,13,3,1", ":")[[1]][4])
depth_extract = function(char){
as.integer(strsplit(char, ":"))[[1]][4]
}
depth_extract("0/1:21,4:0.16:25:8,4:13,0:16:50,0,47:15.513,0.12382,49.774:0,34.77,37.77:9,12,3,1:8,13,3,1" )
depth_extract = function(char){
as.integer(strsplit(char, ":")[[1]][4])
}
depth_extract("0/1:21,4:0.16:25:8,4:13,0:16:50,0,47:15.513,0.12382,49.774:0,34.77,37.77:9,12,3,1:8,13,3,1" )
depth_variants = sapply(vvcf_df, depth_extract)
depth_variants = sapply(vcf_df, depth_extract)
warnings()
length(depth_variants)
hist(depth_variants, breaks = 100)
length_df = as_tibble(length = depth_variants)
length_df = tibble(length = depth_variants)
length_df = length_df %>% count(length)
View(length_df)
ggplot(length_df) + geom_col(aes(x = length, y = n))
ggplot(length_df %>% dplyr::filter(!is.na(length))) + geom_col(aes(x = length, y = n)) + scale_x_log10()
View(length_df)
summary(depth_variants)
View(length_df)
##################
# Download ranking data
#################
ranking_df = list()
ranking_df$all = readRDS("~/Documents/projects/ID/IDome/cache/rank_all_ID_df.RDS")
write_tsv(ranking_df$all, "~/Documents/projects/ID/IDome/cache/rank_all_ID_df.tsv")
ranking_df$severe = readRDS("~/Documents/projects/ID/IDome/cache/rank_severity_df.RDS")
ranking_df$syndromic = readRDS("~/Documents/projects/ID/IDome/cache/rank_syndromicity_df.RDS")
# ID candidate
sysid_genes = read_csv("~/Documents/projects/ID//data/SysID/sysID_list_20190513.csv")
candidate_genes = sysid_genes %>% dplyr::filter(grepl(pattern = "candidate", x = `Gene group`)) %>% pull(`Gene symbol`) %>% unique
head(ranking_df$syndromic)
disease_df = read_csv("~/Documents/projects/ID/data/SysID/disease-info.csv")
tf_df = read_csv("~/Documents/projects/ID/data/SysID/transcription-factor.csv")
neuroscreen_df = read_csv("~/Documents/projects/ID/data/SysID/neuronal-screen.csv")
wingscreen_df = read_csv("~/Documents/projects/ID/data/SysID/wing-screen.csv")
sysid_genelist = read_csv("~/Documents/projects/ID/data/SysID/human-gene-info-20190619.csv")
# annotate information from the human protein atlas
housekeeping_df = read_tsv("~/Documents/projects/data/HPA/housekeeping_proteome.tsv")
tissue_rna_df = read_tsv("~/Documents/projects/data/HPA/rna_tissue_consensus.tsv")
brain_rna_df = read_tsv("~/Documents/projects/data/HPA/rna_brain_gtex.tsv")
mouse_allen_rna_df = read_tsv("~/Documents/projects/data/HPA/rna_mouse_brain_allen.tsv")
# expression in combined HPA, GTEx
rna_expression_normalised = "./"
library(readxl)
PSD_exp = read_xlsx("./data/Brain_expression/barreslab_rnaseq.xlsx")
PSD_exp = read_xlsx("~/Documents/projects/ID/data/Brain_expression/barreslab_rnaseq.xlsx")
##############
# modify the expression data set: taking into account those that we are interested
columnnames = c("name","region","expression","data")
brain_rna_df_mod = brain_rna_df %>% dplyr::select(`Gene name`, `Brain region`, NX) %>% mutate(data = "Human brain")
tissue_rna_df_mod = tissue_rna_df %>% dplyr::select(`Gene name`, Tissue, NX) %>% filter(Tissue %in% c("adrenal gland", "bone marrow")) %>% mutate(data = "GTEx")
colnames(brain_rna_df_mod) = columnnames
colnames(tissue_rna_df_mod) = columnnames
expression_df = rbind(brain_rna_df_mod, tissue_rna_df_mod)
expression_df$ID = expression_df$name %in% ID_all$ID
View(expression_df)
apply(expression_df[,-1], 2, unique)
head(mouse_allen_rna_df)
head(disease_df)
colnames(tf_df)
colnames(neuroscreen_df)
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Entrez id", "Any phenotype")
, by = c( "Gene symbol", "Human gene symbol"))
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Entrez id", "Any phenotype")
, by = c( "Gene symbol"= "Human gene symbol"))
head(wingscreen_df)
colnames(wingscreen_df)
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Entrez id", "Any phenotype")
, by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(WingPhenotypes = `Any phenotype`)
head(additional_data_df)
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Any phenotype")
, by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(WingPhenotypes = `Any phenotype`)
head(additional_data_df)
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Any phenotype")
, by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(Neuroscreen_Phenotypes = `Any phenotype`)
additional_data_df = full_join(additional_data_df, wingscreen_df,
by = c( "Gene symbol"= "Any phenotype")) %>%
rename(WingScreen_Phenotypes = `Any phenotype`)
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Any phenotype")
, by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(Neuroscreen_Phenotypes = `Any phenotype`)
additional_data_df = full_join(additional_data_df, wingscreen_df,
by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(WingScreen_Phenotypes = `Any phenotype`)
head(additional_data_df)
# combine all the information
##########
additional_data_df = full_join(tf_df, neuroscreen_df %>% select("Human gene symbol", "Any phenotype")
, by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(Neuroscreen_Phenotypes = `Any phenotype`)
additional_data_df = full_join(additional_data_df, wingscreen_df %>% select("Human gene symbol", "Any phenotype"),
by = c( "Gene symbol"= "Human gene symbol")) %>%
rename(WingScreen_Phenotypes = `Any phenotype`)
head(additional_data_df)
head(housekeeping_df)
colnames(housekeeping_df)
nrow(housekeeping_df)
View(housekeeping_df)
additional_data_df = full_join(additional_data_df, housekeeping_df %>% select(Gene) %>% mutate(HouseKeeping = T),
by = c( "Gene symbol"= "Gene"))
View(additional_data_df)
head(tf_df)
head(wingscreen_df)
View(neuroscreen_df)
View(wingscreen_df)
# modify the wing and neuroscreen: whether percent of evidence found to show any phenotypes
wingscreen_df_combn = wingscreen_df %>% group_by(`Human gene symbol`) %>%
summarise(WingPhenotype = mean(`Any phenotype`))
View(wingscreen_df_combn)
Neurocreen_df_combn = neuroscreen_df %>% group_by(`Human gene symbol`) %>%
summarise(NeuroScreenPhenotype = mean(`Any phenotype`))
View(Neurocreen_df_combn)
# modify the wing and neuroscreen: whether percent of evidence found to show any phenotypes
wingscreen_df_combn = wingscreen_df %>% group_by(`Human gene symbol`) %>%
summarise(WingPhenotype = mean(`Any phenotype`)>0)
Neurocreen_df_combn = neuroscreen_df %>% group_by(`Human gene symbol`) %>%
summarise(NeuroScreenPhenotype = mean(`Any phenotype`)>0)
View(Neurocreen_df_combn)
# combine all the information
##########
additional_data_df = full_join(tf_df, Neurocreen_df_combn
, by = c( "Gene symbol"= "Human gene symbol"))
additional_data_df = full_join(additional_data_df, wingscreen_df_combn,
by = c( "Gene symbol"= "Human gene symbol"))
additional_data_df = full_join(additional_data_df, housekeeping_df %>% select(Gene) %>% mutate(HouseKeeping = T),
by = c( "Gene symbol"= "Gene"))
head(expression_df)
# from long to wide
expression_df_wide = spread(expression_df, key = region, value = expression)
?spread
# from long to wide
expression_df_wide = spread(expression_df, key = name, value = expression)
unique(expression_df$region)
expression_df[c(170333, 208651),]
nrow(brain_rna_df_mod)
expression_df = expression_df %>% group_by(name, region) %>% distinct()
ncol(expression_df)
?distinct
expression_df = rbind(brain_rna_df_mod, tissue_rna_df_mod)
expression_df = distinct(expression_dfname, region)
expression_df = distinct(expression_df, name, region)
nrow(expression_df)
# from long to wide
expression_df_wide = spread(expression_df, key = region, value = expression)
# from long to wide
expression_df_wide = spread(expression_df, key = `region`, value = `expression`)
last_error()
rlang::last_error()
head(expression_df)
expression_df = rbind(brain_rna_df_mod, tissue_rna_df_mod)
expression_df = distinct(expression_df, name, region, .keep_all = T)
head(expression_df)
# from long to wide
expression_df_wide = spread(expression_df, key = `region`, value = `expression`)
View(expression_df_wide)
# from long to wide
expression_df_wide = spread(expression_df %>% select(-data), key = `region`, value = `expression`)
View(expression_df_wide)
additional_data_df = full_join(additional_data_df, expression_df_wide,
by = c( "Gene symbol"= "name"))
View(additional_data_df)
library(mygene)
# map gene name to other IDs
gene_data = read_tsv("~/Documents/projects/data/gene_info_reduced.txt")
View(gene_data)
gene_data = read_tsv("~/Documents/projects/data/geneDatabase.txt")
View(gene_data)
gene_data = read_tsv("~/Documents/projects/data/geneDatabase.txt", col_types = 'cc------dc---')
additional_data_df = left_join(additional_data_df, gene_data, by = c('Gene symbol' = "Approved symbol"))
additional_data_df = left_join(additional_data_df, gene_data, by = c('Gene symbol' = "Approved Symbol"))
sum(is.na(additional_data_df$`HGNC ID`))
head(PSD_exp)
colnames(PSD_exp)
View(PSD_exp)
write_tsv(additional_data_df, "~/Documents/projects/ID/IDome/cache/combined_gene_phenotypes_expression.tsv")
?readRDS
write_tsv(additional_data_df, "~/Documents/projects/ID/IDome/cache/combined_gene_phenotypes_expression.tsv")
saveRDS(additional_data_df, "~/Documents/projects/ID/IDome/cache/combined_gene_phenotypes_expression.tsv")
write_tsv(additional_data_df, "~/Documents/projects/ID/IDome/cache/combined_gene_phenotypes_expression.tsv")
saveRDS(additional_data_df, "~/Documents/projects/ID/IDome/cache/combined_gene_phenotypes_expression.RDS")
##################
# add gene info
phenodata = readRDS("../IDome/cache/combined_gene_phenotypes_expression.RDS")
head(ranking_df$all)
head(phenodata)
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = `Gene symbol`))
}
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = `Gene symbol`))
}
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = "Gene symbol"))
}
rm(list = ls())
##################
# Download ranking data
#################
ranking_df = list()
ranking_df$all = readRDS("~/Documents/projects/ID/IDome/cache/rank_all_ID_df.RDS")
write_tsv(ranking_df$all, "~/Documents/projects/ID/IDome/cache/rank_all_ID_df.tsv")
ranking_df$severe = readRDS("~/Documents/projects/ID/IDome/cache/rank_severity_df.RDS")
ranking_df$syndromic = readRDS("~/Documents/projects/ID/IDome/cache/rank_syndromicity_df.RDS")
# ID candidate
sysid_genes = read_csv("~/Documents/projects/ID//data/SysID/sysID_list_20190513.csv")
candidate_genes = sysid_genes %>% dplyr::filter(grepl(pattern = "candidate", x = `Gene group`)) %>% pull(`Gene symbol`) %>% unique
##################
# add gene info
phenodata = readRDS("../IDome/cache/combined_gene_phenotypes_expression.RDS")
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = "Gene symbol"))
}
##################
# Perform ROC computation
#################
roc = list()
roc$candidate = list()
roc$trueset = list()
rank_columns = c("RankAllAvg" , "RankEachAvg" ,"RankArithmP" ,"RankGeomP")
for(i in names(ranking_df)){
ranking_df[[i]]$candidate = ranking_df[[i]]$GeneName %in% candidate_genes
ranking_df[[i]] = ranking_df[[i]][order(ranking_df[[i]]$RankGeomP),]
roc$candidate[[i]] = apply(ranking_df[[i]][,rank_columns], 2, function(x) rocit(score=-x,class=ranking_df[[i]][,"candidate"]))
if(i!="all"){
roc$trueset[[i]] = apply(ranking_df[[i]][,rank_columns], 2, function(x) rocit(score=-x,class=ranking_df[[i]][,"trueset"]))
}
}
rm(list = ls())
load("shinydata.RData")
##################
# add gene info
phenodata = readRDS("../IDome/cache/combined_gene_phenotypes_expression.RDS")
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = "Gene symbol"))
}
rm(list = ls())
load('shinydata.RData')
##################
# Download ranking data
#################
ranking_df = list()
ranking_df$all = readRDS("~/Documents/projects/ID/IDome/cache/rank_all_ID_df.RDS")
write_tsv(ranking_df$all, "~/Documents/projects/ID/IDome/cache/rank_all_ID_df.tsv")
ranking_df$severe = readRDS("~/Documents/projects/ID/IDome/cache/rank_severity_df.RDS")
ranking_df$syndromic = readRDS("~/Documents/projects/ID/IDome/cache/rank_syndromicity_df.RDS")
##################
# add gene info
phenodata = readRDS("../IDome/cache/combined_gene_phenotypes_expression.RDS")
save.image(file = "shinydata.RData")
head(ranking_df$all)
colnames(ranking_df$all)
##################
# add gene info
phenodata = readRDS("../IDome/cache/combined_gene_phenotypes_expression.RDS")
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = "Gene symbol"))
}
colnames(ranking_df$all)
save.image(file = "shinydata.RData")
##################
# Download ranking data
#################
ranking_df = list()
ranking_df$all = readRDS("~/Documents/projects/ID/IDome/cache/rank_all_ID_df.RDS")
#write_tsv(ranking_df$all, "~/Documents/projects/ID/IDome/cache/rank_all_ID_df.tsv")
ranking_df$severe = readRDS("~/Documents/projects/ID/IDome/cache/rank_severity_df.RDS")
ranking_df$syndromic = readRDS("~/Documents/projects/ID/IDome/cache/rank_syndromicity_df.RDS")
names(ranking_df)
for(i in names(ranking_df)){
ranking_df[[i]] = left_join(ranking_df[[i]], phenodata, by = c("GeneName" = "Gene symbol"))
write_tsv(ranking_df[[i]], paste0("../IDome/cache/prediction_result_annotate_seed=",i,".tsv"))
}