forked from ifgi/scalable-spatial-temporal-BFAST
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rexec_sar_efp_f.R
257 lines (218 loc) · 9.66 KB
/
rexec_sar_efp_f.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
library(scidb)
#scidbconnect("localhost", 8083, "scidb", "xxxx.xxxx.xxxx")
scidbconnect()
scidblist()
#########################################
###### subset and prepare scidb array ##
#########################################
# NOTE: Adjust the schema accordingly. Meng uses this query to remove overlap
# => remove overlap since data load
iquery("
store(
project(
apply(
repart(
apply(
subarray(
repart(
MOD09Q1_JUARA,
<red:int16,nir:int16,quality:uint16> [col_id=57600:62399,502,5,row_id=48000:52799,502,5,time_id=0:9200,1,0]),
58930,48210,6,59079,48359,643),
evi2,2.5*((nir*0.0001-red*0.0001)/(nir*0.0001+2.4*red*0.0001+1.0))),
<red:int16,nir:int16,quality:uint16,evi2:double>[col_id=0:149,1,1,row_id=0:149,1,1,time_id=0:637,638,0]),
the_i,double(col_id),the_j,double(row_id),the_t,double(time_id)),
the_i, the_j,the_t, evi2),
repro1r)")
#############################################
###### perform sar epf (change detection) ##
#############################################
iquery(" store(r_exec( repro1r, 'output_attrs= 8',
'expr=
#sink(paste(\"/home/menglu/\",the_i[1],the_j[1],\".txt\" ))
library(strucchange)
library(bfast)
library(spdep)
library(nlme)
data(X) # coefficient matrix
data(listcn636) # neighbor
dim1<-length(unique(the_i))
dim2<-length(unique(the_j))
dim3<-length(unique(the_t))
tl=1:636
w=1/46
co <- cos(2*pi*tl*w)
si <- sin(2*pi*tl*w)
co2 <- cos(2*pi*tl*w*2)
si2 <- sin(2*pi*tl*w*2)
co3 <- cos(2*pi*tl*w*3)
si3 <- sin(2*pi*tl*w*3)
newarray1<-array(evi2,c(636, dim2,dim1)) # scidb array to r array
newarray<-aperm(newarray1, c(3,2,1))
fevi3b3<-filter.st.median2(newarray)
#fevi3b3[is.na(fevi3b3)] <- 0
#fevi3b3[fevi3b3>1]<- median(fevi3b3)
#fevi3b3[fevi3b3<-1]<- median(fevi3b3)
#aa2<-as.vector(fevi3b3)
#aa2[aa2==0]<-NA
#fevi3b3[fevi3b3==0]<- median(fevi3b3)
if(dim1<3 || dim2<3)
{
if(all(c(dim1==2,dim2 ==2))) # corner
{
if(all(c(min(the_i)==0, min(the_j)==0)))
{
fevi3b312t1<-ts(fevi3b3[1,1,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-min(the_i)*1.0
rrow<-max(the_j)*1.0
} else if (all(c(min(the_i)==0, min(the_j)>0)))
{
fevi3b312t1<-ts(fevi3b3[2,1,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-min(the_i)*1.0
rrow<-max(the_j)*1.0
}
else if (all(c(min(the_i)>0,min(the_j)==0))) #upper right
{
fevi3b312t1<-ts(fevi3b3[1,2,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-max(the_i)*1.0
rrow<-min(the_j)*1.0
}
else if (all(c(min(the_i)>0,min(the_j)>0)))
{
fevi3b312t1<-ts(fevi3b3[2,2,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-max(the_i)*1.0
rrow<-max(the_j)*1.0
}
} else if ( all(c(dim1==3, dim2==2,max(the_j)==1))) # row 1 #dim 1 is actually the length of j # side
{
fevi3b312t1<-ts(fevi3b3[1,2,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-(min(the_i)+1)*1.0
rrow<-min(the_j)*1.0
} else if (all(c( dim1==2, dim2==3 , max(the_i)==1))) #col 1
{
fevi3b312t1<-ts(fevi3b3[2,1,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-min(the_i)*1.0
rrow<-(min(the_j)+1)*1.0
} else if (all(c( dim1==3 , dim2==2 ))) #col 149 # max(the_j)==149 is not needed
{
fevi3b312t1<-ts(fevi3b3[2,2,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-(min(the_i)+1)*1.0
rrow<-max(the_j)*1.0
}else if (all(c( dim1==2, dim2==3 ))) #col 1 , max(the_i)==149
{
fevi3b312t1<-ts(fevi3b3[2,2,],start=c(2000,1),frequency=46) # reconstruct the time series with its own
rcol<-max(the_i)*1.0
rrow<-(min(the_j)+1)*1.0
}
resar1<-coredata(residuals(gls(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3,correlation=corAR1())))
p.Vt3 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-CUSUM\" ))
p.Vt4 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-MOSUM\" ))
p.Vt5 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-CUSUM\" ,spatial1=as.numeric(resar1)) )
p.Vt6 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-MOSUM\" ,spatial1=as.numeric(resar1)) )
spcusum1<-p.Vt3$p.value*1.0 # spautolm residuals CUSUM
spmosum1 <-p.Vt4$p.value*1.0 # spautolm residuals MOSUM
cusum1 <-p.Vt3$p.value*1.0 # CUSUM
mosum1<-p.Vt4$p.value*1.0 # MOSUM
cusumar1 <-p.Vt5$p.value*1.0 # CUSUM ar 1
mosumar1 <-p.Vt6$p.value*1.0 # MOSUM ar1
}else {
rcol <- (min(the_i)+1)*1.0
rrow <- (min(the_j)+1)*1.0
aa2<-as.vector(fevi3b3)
fevi3b312t1<-ts(fevi3b3[2,2,],start=c(2000,1),frequency=46) # reconstruct the time series
try2<-try(spautolm(aa2~. , data.frame(aa2,X),family=\"SAR\",method= \"Matrix\", listw=listcn636,na.action=na.exclude,zero.policy=TRUE))
if(class(try2)==\"try-error\")
{
spcusum1=-1.0
spmosum1=-1.0
cusum1=-1.0
mosum1=-1.0
cusumar1=-1.0
mosumar1=-1.0
} else{
rn<-lapply(1:9,function(i) {residuals(try2)[seq(i,636*9-(9-i),9)]})
#get residuals for each time series
ii<-5 # get the middle pixel (5 for 3*3 matrix)
#AR model
resar1<-coredata(residuals(gls(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3,correlation=corAR1())))
p.Vt1 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-CUSUM\", spatial1=as.numeric(rn[[ii]])) )
p.Vt2 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-MOSUM\", spatial1=as.numeric(rn[[ii]])) )
# use the original strucchange package
# p.Vt1 <- sctest(as.numeric(rn[[ii]]) ~ 0, h = 0.15, type = \"OLS-CUSUM\", spatial1=as.numeric(rn[[ii]])) )
# p.Vt2 <- sctest(as.numeric(rn[[ii]]) ~ 0, h = 0.15, type = \"OLS-MOSUM\", spatial1=as.numeric(rn[[ii]])) )
p.Vt3 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-CUSUM\" ))
p.Vt4 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-MOSUM\" ))
p.Vt5 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-CUSUM\" ,spatial1=as.numeric(resar1)) )
p.Vt6 <- sctest(efp(fevi3b312t1 ~ tl+co+co2+co3+si+si2+si3, h = 0.15, type = \"OLS-MOSUM\" ,spatial1=as.numeric(resar1)) )
# p.Vt5 <- sctest(efp(as.numeric(resar1) ~ 0, h = 0.15, type = \"OLS-CUSUM\" ))
# p.Vt6 <- sctest(efp(as.numeric(resar1) ~ 0, h = 0.15, type = \"OLS-MOSUM\" ))
spcusum1 <-p.Vt1$p.value*1.0 # spautolm residuals CUSUM
spmosum1 <-p.Vt2$p.value*1.0 # spautolm residuals MOSUM
cusum1 <-p.Vt3$p.value*1.0 # CUSUM
mosum1 <-p.Vt4$p.value*1.0# MOSUM
cusumar1 <-p.Vt5$p.value*1.0 # CUSUM ar 1
mosumar1 <-p.Vt6$p.value*1.0 # MOSUM ar1
}
}
list(spcusum1, spmosum1,cusum1,mosum1,cusumar1,mosumar1,rcol,rrow )
'), outputsar150f2)",
return=TRUE
)
#spcusum1, spmosum1,cusum1,mosum1,cusumar1,mosumar1,rcol,rrow
# iquery("show(resarefpscidbf2)",return=TRUE,n=10)
#################################################
###### restore the output array to SciDB array##
#################################################
#Restore the dimensions (attribute double to int64, then redimension)
iquery("store(
redimension(
subarray( project(
apply(
attribute_rename(
project(
unpack(outputsar150f2, tmpDim) ,
expr_value_0,expr_value_1,expr_value_2,expr_value_3,expr_value_4,expr_value_5
,expr_value_6,expr_value_7
),
expr_value_0, spcu, expr_value_1,spmo, expr_value_2,cu, expr_value_3, mo,
expr_value_4,arcu,expr_value_5,armo,expr_value_6,thecol,expr_value_7,therow
),
col1, int64(thecol), row1, int64(therow)
),
col1,row1, spcu,spmo,cu,mo,arcu,armo
), 0,22499),
<spcu:double, spmo:double, cu: double,mo:double, arcu:double,armo:double> [col1=0:149,3,0, row1=0:149,3,0]
), resarefpscidbf03)",return=TRUE)
#iquery("dimensions(resarefpscidbf02)",return=TRUE)
# mind the name has to match!!
#resarefpscidb2
#iquery("store(
# project(
# apply(
# attribute_rename(
# project(
# unpack(outputsar150f2, tmpDim) ,
# expr_value_0,expr_value_1,expr_value_2,expr_value_3,expr_value_4,expr_value_5
# ,expr_value_6,expr_value_7
# ),
# expr_value_0, spcu, expr_value_1,spmo, expr_value_2,cu, expr_value_3, mo,
# expr_value_4,arcu,expr_value_5,armo,expr_value_6,thecol,expr_value_7,therow
# ),
# col1, int64(thecol), row1, int64(therow)
# ),
# col1,row1, spcu,spmo,cu,mo,arcu,armo
# ), resarefpscidbf2t)",return=TRUE)
#iquery("dimensions(resarefpscidbf2t)",return=TRUE)
#r1<-scidb("resarefpscidbf2t")
#summary(r1[])
#x1<-r1[]$row1
#y1<-r1[]$col1
#v1<-r1[]$mo
#t1<-data.frame(cbind(x1,y1,v1))
#coordinates(t1)<-~x1+y1
#t11<-raster(t1)
#t2<- subset(t1,t1["v1"]<0.05,select = c(1, 2,3))
#par(mfrow=c(1,2))
#spplot(t2)
#spplot(raster(tssarar4)<0.05)
# gridded(t1)<-TRUE
#spplot(raster(t1)<0.05)