-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
93 lines (79 loc) · 2.88 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
author: mengxue
email: mx.zhang.rs@gmail.com
last date: May 29 2024
"""
import torch
from dk_vrn import DK_VRN
from functions import train, test, compute_metrics
from tools.drought_index import DROUGHT_INDEX
"""
First step: generation of Domain Knowledge (SPEIs) from ECVs and conversion to probability
"""
idx_data = None
if idx_data is not None:
idx_prob = DROUGHT_INDEX.idx2prob(idx_data)
"""
Second step: ECVs (ERA5), Domain Knowledge (SPEIs), and Ground Truth (EM-DAT) for training
"""
tpb = 256 # number of time step
b_s = 4 # batch size
L1 = 2 # feature number of ERA5
L2 = 3 # feature number of SPEIs
x0 = torch.zeros((tpb, b_s, L1))
x1 = torch.zeros((tpb, b_s, L2))
y = torch.zeros((tpb, b_s))
"""
Third step: network init and training
"""
network = DK_VRN(ninp1=L1, ninp2=L2, nhid=32, en_hid=32, de_hid=32, nout=1)
n_inference = 10 # number of generated outputs (Eq. 14)
lr = 1e-4 # learning rate
grad_clip = 1e-5 # gradient clipping
n_epochs = 200
ratio1 = [1.0, 1.0, 1e-2] # ratio of loss gradients (Eq. 8)
ratio2 = [1.0, 1.0] # ratio of loss gradients (Eq. 7)
train_data = None
val_data = None
test_data = None
train_data_loader = None
val_data_loader = None
test_data_loader = None
if train_data and val_data and train_data_loader and val_data_loader:
best_val_roc = None
device = torch.device("cuda")
save_path = './checkpoints/dk_vrn'
for epoch in range(1, n_epochs + 1):
train(network, train_data_loader, ratio1, ratio2, lr, grad_clip, device)
val_metrics = test(network, val_data, val_data_loader, n_infer=1, device=device)
if not best_val_roc or (val_metrics["roc"] > best_val_roc):
best_val_roc = val_metrics["roc"]
print('save model at epoch ' + str(epoch))
with open(save_path, 'wb') as f:
torch.save(network, f)
else:
print("ECV: {}".format(x0.detach().cpu().numpy().shape))
print("Index: {}".format(x1.detach().cpu().numpy().shape))
print("Label: {}".format(y.detach().cpu().numpy().shape))
"""
Last step: network inference
"""
if test_data and test_data_loader:
device = torch.device("cuda")
with open(save_path, 'rb') as f:
trained_network = torch.load(f)
metrics = test(trained_network, test_data, test_data_loader, n_infer=1, device=device)
metrics = compute_metrics(metrics["preds"], metrics["gt"], metrics['time'], metrics['mask'])
time = metrics["time"].tolist()
print('=' * 89)
print_str = '| '
for k, v in metrics.items():
if k not in ["pred", "gt", "time"]:
print_str = print_str + ' | ' + k + ' {:5.3f}'.format(metrics[k])
print(print_str)
print('=' * 89)
else:
pred_y = network.infer(x0=x0)
pred_ny = network.infer_with_uncertainty(x0=x0, n_z=n_inference)
print("Pred Prob: {}".format(pred_y.detach().cpu().numpy().shape))
print("Pred Prob with Uncertainty: {}".format(pred_ny.detach().cpu().numpy().shape))