-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbrok1.py
executable file
·42 lines (32 loc) · 976 Bytes
/
brok1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env python3
import mysql.connector as mysql
import pandas as pd
from sklearn.cluster import KMeans
import sys
db=mysql.connect(host="localhost", user="akash", passwd="akash11", database="brokfree")
cursor=db.cursor()
cursor.execute("SELECT * FROM activity")
result=cursor.fetchall()
db.close()
df=pd.DataFrame(result, columns=['ID','Username','Day 1','Day 2', 'Day 3', 'Day 4', 'Day 5', 'Day 6', 'Day 7', 'Day 8', 'Day 9', 'Day 10'])
list1=df['ID'].tolist()
list2=df['Username'].tolist()
df=df.drop('Username',1)
df=df.drop('ID',1)
#Performing K Means Clustering
kmeans=KMeans(n_clusters=2, init='random', random_state=1)
kmeans.fit(df)
df['ID']=list1
df['Username']=list2
df['Cluster']=kmeans.labels_
#name=sys.argv[1]
name='Akash Menon'
if(name in df.values):
a=df.loc[df.Username==name]
value=a['Cluster'].values
if(value==0):
print('Broker')
elif(value==1):
print("Normal user!")
else:
print("User doesn't exist!")