-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
124 lines (107 loc) · 4.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Utilities
Dependencies:
- Python 3.7.6
- NumPy 1.18.1
- PyTorch 1.4.0
- arrow 0.13.1
"""
import torch
import numpy as np
def tvloss(p_hat):
"""TV loss"""
# p_max, _ = torch.max(p_hat, dim=1) # [batch_size, n_sample]
# return p_max.sum(dim=1).mean() # scalar
p_min, _ = torch.min(p_hat, dim=1) # [batch_size, n_sample]
return p_min.sum(dim=1).mean() # scalar
def celoss(p_hat):
"""cross entropy loss"""
crossentropy = - p_hat * torch.log(p_hat) # [batch_size, n_sample]
return crossentropy.sum(dim=1).mean() # scalar
def pairwise_dist(X, Y):
"""
calculate pairwise l2 distance between X and Y
"""
X_norm = (X**2).sum(dim=1).view(-1, 1) # [n_xsample, 1]
Y_t = torch.transpose(Y, 0, 1) # [n_feature, n_ysample]
Y_norm = (Y**2).sum(dim=1).view(1, -1) # [1, n_ysample]
dist = X_norm + Y_norm - 2.0 * torch.mm(X, Y_t) # [n_xsample, n_ysample]
return dist
def sortedY2Q(Y):
"""
transform the sorted input label into the empirical distribution matrix Q, where
Q_k^l = 1 / n_k, for n_{k-1} \le l \le n_{k+1}
= 0, otherwise
input
- Y: [batch_size, n_sample]
output
- Q: [batch_size, n_class, n_sample]
"""
batch_size, n_sample = Y.shape
# NOTE:
# it is necessary to require that the number of data points of each class in a single batch
# is no less than 1 here.
classes = torch.unique(Y)
n_class = classes.shape[0]
# N records the number of data points of each class in each batch [batch_size, n_class]
N = [ torch.unique(y, return_counts=True)[1] for y in Y.split(split_size=1) ]
N = torch.stack(N, dim=0)
# construct an empty Q matrix with zero entries
Q = torch.zeros(batch_size, n_class, n_sample)
for batch_idx in range(batch_size):
for class_idx in range(n_class):
_from = N[batch_idx, :class_idx].sum()
_to = N[batch_idx, :class_idx+1].sum()
n_k = N[batch_idx, class_idx].float()
Q[batch_idx, class_idx, _from:_to] = 1 / n_k
return Q
def evaluate_2Dspace(X_train, X_test, n_grid):
min_X = np.concatenate((X_train, X_test), 0).min(axis=0)
max_X = np.concatenate((X_train, X_test), 0).max(axis=0)
min_X, max_X = min_X - (max_X - min_X) * .2, max_X + (max_X - min_X) * .2
X_space = [ np.linspace(min_x, max_x, n_grid + 1)[:-1]
for min_x, max_x in zip(min_X, max_X) ] # (n_feature [n_grid])
X = [ [x1, x2] for x1 in X_space[0] for x2 in X_space[1] ]
X = torch.Tensor(X) # [n_grid * n_grid, n_feature]
return min_X, max_X, X
# def sortbyclass(X, Y):
# """
# return the sorted data _X and label _Y by their classes (value of Y)
# input
# - X: [batch_size, n_sample, n_feature]
# - Y: [batch_size, n_sample]
# output
# - _X: [batch_size, n_sample, n_feature]
# - _Y: [batch_size, n_sample]
# """
# sorted_ids = torch.argsort(Y, dim=1)
# _Y = [ Y[batch_idx, sorted_id] for batch_idx, sorted_id in enumerate(sorted_ids) ]
# _X = [ X[batch_idx, sorted_id] for batch_idx, sorted_id in enumerate(sorted_ids) ]
# _Y = torch.stack(_Y, dim=0)
# _X = torch.stack(_X, dim=0)
# return _X, _Y
# def plot_acc_over_k():
# with open("resultsacc/knn.txt", "r") as f:
# data = [ [ float(d) for d in line.strip("\n").split(",") ] for line in f.readlines() ]
# t = np.arange(len(data[0]))
# # the steps and position
# X = np.array(data).mean(0)
# # the 1 sigma upper and lower analytic population bounds
# lower_bound = np.array(data).min(0)
# upper_bound = np.array(data).max(0)
# fig, ax = plt.subplots(1)
# ax.plot(t, X, lw=2, label='mean accuracy', color='blue')
# # ax.plot(t, mu*t, lw=1, label='population mean', color='black', ls='--')
# ax.fill_between(t, lower_bound, upper_bound, facecolor='yellow', alpha=0.5,
# label='3 sigma range')
# ax.legend(loc='upper left')
# # here we use the where argument to only fill the region where the
# # walker is above the population 1 sigma boundary
# # ax.fill_between(t, upper_bound, X, where=X > upper_bound, facecolor='blue',
# # alpha=0.5)
# ax.set_xlabel('k')
# ax.set_ylabel('accuracy')
# ax.grid()
# plt.show()