forked from mehmetyamac/CS-Privacy-Protection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
userB.m
226 lines (183 loc) · 7.34 KB
/
userB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
function [solImage, infor, fail] = userB(y_w,watermark_inf, smean,param)
%%%%%%%%%%%%%%%
% This function takes the compressed + encripted signal, and the parameters
% of the framework as the input, and it reconstrcts the signal s for User-B
%%%%%%%%%%%%%%%
S1 = param.S1; % Image dimensions.
S2 = param.S2;
N = S1*S2; % Total signal size per channel.
m = round(param.N*param.mratio); % Compressed signal size per channel.
M = param.M; % Max. length of the bits for embedding the watermark.
% Transforms
h=MakeONFilter('Coiflet',2);
Wav=@(t) FWT2_POE(t,3,h); % Wavelet coeefficients of image.
inWav= @(t) IWT2_POE(t,3,h);
Wav1=@(t) wavelet(t,Wav,S1,S2);
inWav1=@(t) inwavelet(t,inWav,S1,S2);
% Measurements
% Encoding matrix (Measurement matrix) for the signal s.
rng(1)
temp1 = randperm(N);
omega = temp1(1:m); % Pick up m measurements randomnly
param.redundant=param.N-N; % How much we have left for the max. signal length per channel.
phi = @(t) Noiselet([t;zeros(param.redundant,1)],omega);
A = @(t) Noiselet_inW(phi,inWav1,t);
% Encoding for the watermark.
rng(2)
temp2 = randperm(m);
p1 = m-M./3;
omega2 = temp2(1:p1);
F = @(t) DHT(t,omega2);
FA = @(t) DHT(A(t),omega2);
% Adjoints of the above matrices.
phiT= @(t) Adj_Noiselet(t,param.N,omega);
AT = @(t) Adj_Noiselet_inW(phiT,Wav1,t,N);
FT = @(t) At_DHT( t,omega2,m ); % B
FAT = @(t) Adj_Noiselet_inW(phiT,Wav1,FT(t),N);
temp2=ones(m,1);
temp2(omega2)=0;
in=find(temp2==1);
%%%% Decoding Part %%%%%%%%
% Regularization parameter
tau = 4;
% Set tolA
tolA = 1.e-7;
for i=1:3 % Reconstruction of the watermark.
y_tild = F(y_w((i-1)*m+1:i*m));
% First estimation of x:
[~,x_tild1,objective,times,debias_start,mses]= ...
GPSR_BB(y_tild,FA,tau,...
'Debias',1,...
'AT',FAT,...
'Initialization',0,...
'StopCriterion',1,...
'ToleranceA',tolA,'ToleranceD',0.00001);
%%%%%%%%%%%%%%%%% Reconstruct watermark messege %%%%%
v = watermark_inf.v1(i);
new_y = y_w((i-1)*m+1:i*m) - A(x_tild1);
w_t = DHT(new_y,in);
w_h = zeros(size(w_t));
w_h(w_t >= 0) = v*1;
w_h(w_t < 0) = v*-1;
www_hat(:,i) = w_h;
end
% Convert the recovered watermark information into bits
w_hat = zeros(size(www_hat));
w_hat(www_hat>0) = 1;
w_hat(www_hat<0) = 0;
% Collect the watermark information from each channel.
k=1:3:M;
l=2:3:M;
d=3:3:M;
www_h(k)=w_hat(:,1);
www_h(l)=w_hat(:,2);
www_h(d)=w_hat(:,3);
% Recover the mask region, this is for the demo script.
if isempty(param.x1)
masklength=bin2dec(num2str(www_h(1:9)));
b{1} = zeros(masklength,2);
temp = www_h(10:(masklength*9+9));
temp = reshape(temp,masklength,9);
b{1}(:,1) = bin2dec(num2str(temp));
temp2 = www_h((masklength*9+10):masklength*9*2+9);
temp2 = reshape(temp2,masklength,9);
b{1}(:,2) = bin2dec(num2str(temp2));
fail = 0;
if ~isequal(b, param.b)
fail = 1; % The recovery of the privacy sensitive locations is failed.
if param.emLOC == false % Check if the flag is set to use original ground-truth instead.
b = param.b;
end
end
% Find the boundaries and use them .
mask2 = false([param.S1, param.S2]);
for i = 1:length(b)
for j = 1:length(b{i})
ind = b{i}(j,:);
mask2(ind(1),ind(2))=1;
end
end
% Obtain M and calculate the error.
inside = bwfill(mask2,'holes');
outside = (inside-1).*(-1);
idx = find(inside == 1);
www_h(www_h == 0)=-1;
D=zeros(S1,S2); % Binary mask.
D(idx)=www_h(masklength*9*2+10:masklength*9*2+9+length(idx));
D2 = D.*param.matrix(1:param.S1,1:param.S2); % Binary masked Gaussian degradation.
infor.total_error = sum(sum(D ~= watermark_inf.D));
%%% Zero-out the unused bits
aa = round((masklength*9*2+10+length(idx)-1)/3);
www_hat((aa+1):end, :) = 0; % Zero-out the unused bits.
else
% Recover face locations. this is for benchmarking over YouTube dataset.
pp.x1=bin2dec(num2str(www_h(1:8)));
pp.x2=bin2dec(num2str(www_h(9:16)));
pp.y1=bin2dec(num2str(www_h(17:24)));
pp.y2=bin2dec(num2str(www_h(25:32)));
fail = 0;
if (param.x1 ~= round(pp.x1)) || (param.x2 ~= round(pp.x2)) || (param.y1 ~= round(pp.y1)) || (param.y2 ~= round(pp.y2))
fail = 1; % The recovery of the face locations is failed.
if param.emLOC == false % Check if the flag is set to use original ground-truth instead.
pp.x1 = param.x1;
pp.x2 = param.x2;
pp.y1 = param.y1;
pp.y2 = param.y2;
end
end
s_hat1 = inWav1(x_tild1(:)); % x -> s
s_hat1 = reshape(s_hat1,S1,S2);
s_hat = s_hat1 + smean(3); % Add substracted mean.
% Create the mask for the privacy sensitive pixels.
mask = zeros(size(s_hat));
mask(pp.y2:pp.y1, pp.x2:pp.x1) = 1;
% Obtain M and calculate the error.
area_mask = sum(sum(mask));
www_h(www_h == 0) = -1;
tmp = www_h(33:33+area_mask-1);
inside = zeros(S1,S2);
inside(mask == 1) = tmp;
D = watermark_inf.D;
infor.total_error = sum(sum(D~=inside));
D = inside; % Binary mask.
D2 = D.*param.matrix(1:param.S1,1:param.S2); % Binary masked Gaussian degradation
outside = (mask-1).*(-1);
aa = (33+area_mask-1)./3;
www_hat((aa+1):end,:) = 0; % Zero-out the unused bits.
end
switch param.degradation
case 'binary'
phi_D = @(t) phi(outside(:).*t+D(:).*t);
phiT_Dt = @(t) outside(:).*new_phi_T(t,phiT,N) +D(:).*new_phi_T(t,phiT,N);
case 'gauss'
phi_D = @(t) phi(outside(:).*t+D2(:).*t);
phiT_Dt = @(t) outside(:).*new_phi_T(t,phiT,N) +D2(:).*new_phi_T(t,phiT,N);
end
A_D = @(t) Noiselet_inW(phi_D,inWav1,t);
AT_Dt = @(t) Adj_Noiselet_inW(phiT_Dt,Wav1,t,N);
sol=zeros(S1,S2,3);
% Regularization parameter
tau = 4;
% Set tolA
tolA = 1.e-5;
% Final estimation of x to form s,
for i =1:3 % Estimate s for each channel.
newy2 = y_w((i-1)*m+1:i*m) - At_DHT(www_hat(:,i),in,m);
[~,x_debias3,~,~,~,~]= ...
GPSR_BB(newy2,A_D,tau,...
'Debias',1,...
'AT',AT_Dt,...
'Initialization',2,...
'StopCriterion',1,...
'ToleranceA',tolA,'ToleranceD',0.0001);
s_hat_h=inWav1(x_debias3); % Inverse wavelet to compute s from x.
s_hat=reshape(s_hat_h,S1,S2);
s_hat=s_hat + smean(i); % Add substracted mean from the transmitter.
sol(:,:,i) = s_hat;
end
solImage = uint8(cat(3, sol(:,:,1), sol(:,:,2), sol(:,:,3))); % Collect reconstructed signal for each channel.
end
function out = new_phi_T(t,phi_T,N)
s_hat1=phi_T(t);
out = s_hat1(1:N);
end