Skip to content

Commit aaabbdf

Browse files
committed
Criado usando o Colab
1 parent 03d6ae8 commit aaabbdf

File tree

1 file changed

+197
-18
lines changed

1 file changed

+197
-18
lines changed

ESTUDO_DE_PYTHON_.ipynb

+197-18
Original file line numberDiff line numberDiff line change
@@ -3,10 +3,11 @@
33
{
44
"cell_type": "markdown",
55
"metadata": {
6-
"id": "view-in-github"
6+
"id": "view-in-github",
7+
"colab_type": "text"
78
},
89
"source": [
9-
"<a href=\"https://colab.research.google.com/github/metsumesquita/Python_resumo/blob/main/ESTUDO_DE_PYTHON.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
10+
"<a href=\"https://colab.research.google.com/github/metsumesquita/Python_resumo/blob/main/ESTUDO_DE_PYTHON_.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
1011
]
1112
},
1213
{
@@ -32,7 +33,7 @@
3233
},
3334
{
3435
"cell_type": "code",
35-
"execution_count": 3,
36+
"execution_count": null,
3637
"metadata": {
3738
"id": "fnjTKFkCu0nx"
3839
},
@@ -43,7 +44,7 @@
4344
},
4445
{
4546
"cell_type": "code",
46-
"execution_count": 4,
47+
"execution_count": null,
4748
"metadata": {
4849
"id": "llWCVCCyS2DW"
4950
},
@@ -1132,13 +1133,6 @@
11321133
"print(elevar)"
11331134
]
11341135
},
1135-
{
1136-
"cell_type": "markdown",
1137-
"metadata": {
1138-
"id": "QyuPhr8rAaS-"
1139-
},
1140-
"source": []
1141-
},
11421136
{
11431137
"cell_type": "code",
11441138
"execution_count": null,
@@ -1683,6 +1677,59 @@
16831677
"#esse o ano é bissexto"
16841678
]
16851679
},
1680+
{
1681+
"cell_type": "markdown",
1682+
"source": [
1683+
"##numeros interios ou float"
1684+
],
1685+
"metadata": {
1686+
"id": "H58t1a6Vumv_"
1687+
}
1688+
},
1689+
{
1690+
"cell_type": "code",
1691+
"source": [
1692+
"\n",
1693+
"numero =input(\"infome um numero qualquer\")\n",
1694+
"divisor= input(\"informe um valor para dividir o numero qualquer que voce informou\")\n",
1695+
"\n",
1696+
"if numero%divisor==0 :\n",
1697+
" print(\"Este número: \" + str(numero) + \" é divisível por \" + str(divisor))\n",
1698+
"else :\n",
1699+
" print(\"este numero: \" + str(numero) + \" não divisivel por \" + str(divisor))\n",
1700+
"\n"
1701+
],
1702+
"metadata": {
1703+
"colab": {
1704+
"base_uri": "https://localhost:8080/",
1705+
"height": 245
1706+
},
1707+
"id": "csMaEnRMuy7i",
1708+
"outputId": "8e5a0bdb-1175-46c5-8f57-b92ab0c14349"
1709+
},
1710+
"execution_count": null,
1711+
"outputs": [
1712+
{
1713+
"name": "stdout",
1714+
"output_type": "stream",
1715+
"text": [
1716+
"infome um numero qualquer30\n",
1717+
"informe um valor para dividir o numero qualquer que voce informou3\n"
1718+
]
1719+
},
1720+
{
1721+
"output_type": "error",
1722+
"ename": "TypeError",
1723+
"evalue": "not all arguments converted during string formatting",
1724+
"traceback": [
1725+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1726+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
1727+
"\u001b[0;32m<ipython-input-19-414d8d89e0c1>\u001b[0m in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mdivisor\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"informe um valor para dividir o numero qualquer que voce informou\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mnumero\u001b[0m\u001b[0;34m%\u001b[0m\u001b[0mdivisor\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;36m0\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Este número: \"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumero\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\" é divisível por \"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdivisor\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1728+
"\u001b[0;31mTypeError\u001b[0m: not all arguments converted during string formatting"
1729+
]
1730+
}
1731+
]
1732+
},
16861733
{
16871734
"cell_type": "markdown",
16881735
"metadata": {
@@ -3052,9 +3099,27 @@
30523099
"id": "s0b6x1-XRSa9"
30533100
},
30543101
"source": [
3055-
"#FIFO FALTA"
3102+
"#FIFO (First In, First Out) FALTA\n",
3103+
"####não necessamente é uma lista\n",
3104+
"\n",
3105+
"\n",
3106+
"FALTAAA"
30563107
]
30573108
},
3109+
{
3110+
"cell_type": "code",
3111+
"source": [
3112+
"# https://www.otaviomiranda.com.br/2020/filas-em-python-com-deque-queue/\n",
3113+
"#https://www.oreilly.com/library/view/python-cookbook/0596001673/ch17s15.html\n",
3114+
"# https://medium.com/@khasnobis.sanjit890/linear-data-structure-queue-in-python-fifo-first-in-first-out-bbd03f6b3b0f\n",
3115+
"#https://www.simplilearn.com/tutorials/python-tutorial/queue-in-python#:~:text=Python%20list%20is%20used%20as,to%20maintain%20the%20FIFO%20manner."
3116+
],
3117+
"metadata": {
3118+
"id": "FOOPAX0gaaTK"
3119+
},
3120+
"execution_count": null,
3121+
"outputs": []
3122+
},
30583123
{
30593124
"cell_type": "markdown",
30603125
"metadata": {
@@ -3622,7 +3687,7 @@
36223687
"#modificamos o parametro que quebra do nosso string\n",
36233688
"def get_mail(string):\n",
36243689
" li = list(string.split(\"@\"))\n",
3625-
" #pegamos a 2 parte da saber o tipo da fonte de email \n",
3690+
" #pegamos a 2 parte da saber o tipo da fonte de email\n",
36263691
" return li[1]\n",
36273692
" #retornamos o tipo\n",
36283693
"\n",
@@ -3638,7 +3703,9 @@
36383703
{
36393704
"cell_type": "code",
36403705
"execution_count": null,
3641-
"metadata": {},
3706+
"metadata": {
3707+
"id": "Kj2CB7vxXYnM"
3708+
},
36423709
"outputs": [],
36433710
"source": [
36443711
"# Definição do dicionário de produtos e listas de itens\n",
@@ -3692,7 +3759,7 @@
36923759
" return i\n",
36933760
" else:\n",
36943761
" return -1\n",
3695-
" \n",
3762+
"\n",
36963763
"# Função para calcular o preço da bebida com base na quantidade\n",
36973764
"def calcular_preço_bebida(posição):\n",
36983765
" qtd = int(input(\"Informe a quantidade do item que você deseja: \"))\n",
@@ -3720,7 +3787,7 @@
37203787
" print(f\"O valor total para {escolhido} é: R${totalB:.2f}\")\n",
37213788
" else:\n",
37223789
" print(\"Item não encontrado na lista de bebidas.\")\n",
3723-
" \n",
3790+
"\n",
37243791
"elif opçãolista == 2:\n",
37253792
" escolhido = input(\"Informe por escrito qual o nome do item selecionado: \")\n",
37263793
" posição = itemPosiçãoC(escolhido)\n",
@@ -3957,6 +4024,15 @@
39574024
"np.linspace(0., 8., 6)\n"
39584025
]
39594026
},
4027+
{
4028+
"cell_type": "code",
4029+
"source": [],
4030+
"metadata": {
4031+
"id": "HkHS5NkFhk_Y"
4032+
},
4033+
"execution_count": null,
4034+
"outputs": []
4035+
},
39604036
{
39614037
"cell_type": "code",
39624038
"execution_count": null,
@@ -4920,6 +4996,109 @@
49204996
" return \"<p>Hello, World!</p>\""
49214997
]
49224998
},
4999+
{
5000+
"cell_type": "markdown",
5001+
"source": [
5002+
"REDES NEURAIS\n",
5003+
"https://medium.com/geekculture/understanding-the-basics-of-neural-networks-for-beginners-9c26630d08\n",
5004+
"https://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/\n",
5005+
"https://www.simplilearn.com/tutorials/deep-learning-tutorial/neural-network\n"
5006+
],
5007+
"metadata": {
5008+
"id": "iON51fPHBCH6"
5009+
}
5010+
},
5011+
{
5012+
"cell_type": "code",
5013+
"source": [],
5014+
"metadata": {
5015+
"id": "Bwkt1psWBCej"
5016+
},
5017+
"execution_count": null,
5018+
"outputs": []
5019+
},
5020+
{
5021+
"cell_type": "code",
5022+
"source": [],
5023+
"metadata": {
5024+
"id": "SW9Hr3hXBDDz"
5025+
},
5026+
"execution_count": null,
5027+
"outputs": []
5028+
},
5029+
{
5030+
"cell_type": "code",
5031+
"source": [],
5032+
"metadata": {
5033+
"id": "AmP6Vwk5BC1K"
5034+
},
5035+
"execution_count": null,
5036+
"outputs": []
5037+
},
5038+
{
5039+
"cell_type": "markdown",
5040+
"source": [
5041+
"#criando arquivos aparti deste"
5042+
],
5043+
"metadata": {
5044+
"id": "veL3Yb0oZFYO"
5045+
}
5046+
},
5047+
{
5048+
"cell_type": "code",
5049+
"source": [
5050+
"import nbformat\n",
5051+
"\n",
5052+
"# Caminho para o arquivo do notebook\n",
5053+
"file_path = \"/mnt/data/ESTUDO_DE_PYTHON_.ipynb\"\n",
5054+
"\n",
5055+
"# Carregando o notebook\n",
5056+
"with open(file_path, \"r\", encoding=\"utf-8\") as file:\n",
5057+
" notebook = nbformat.read(file, as_version=4)\n",
5058+
"\n",
5059+
"# Verificando as seções (células) do notebook\n",
5060+
"notebook_cells = notebook.cells\n",
5061+
"len(notebook_cells), notebook_cells[0], notebook_cells[-1]\n"
5062+
],
5063+
"metadata": {
5064+
"id": "BUXq77YdZIvd"
5065+
},
5066+
"execution_count": null,
5067+
"outputs": []
5068+
},
5069+
{
5070+
"cell_type": "code",
5071+
"source": [
5072+
"# Função para criar um novo notebook com um subconjunto de células\n",
5073+
"def create_notebook(cells, path):\n",
5074+
" new_notebook = nbformat.v4.new_notebook()\n",
5075+
" new_notebook.cells = cells\n",
5076+
" with open(path, 'w', encoding='utf-8') as f:\n",
5077+
" nbformat.write(new_notebook, f)\n",
5078+
"\n",
5079+
"# Dividindo as células em três partes\n",
5080+
"part1_cells = notebook_cells[:76]\n",
5081+
"part2_cells = notebook_cells[76:152]\n",
5082+
"part3_cells = notebook_cells[152:]\n",
5083+
"\n",
5084+
"# Caminhos para os novos arquivos\n",
5085+
"part1_path = \"/mnt/data/ESTUDO_DE_PYTHON_part1.ipynb\"\n",
5086+
"part2_path = \"/mnt/data/ESTUDO_DE_PYTHON_part2.ipynb\"\n",
5087+
"part3_path = \"/mnt/data/ESTUDO_DE_PYTHON_part3.ipynb\"\n",
5088+
"\n",
5089+
"# Criando os novos notebooks\n",
5090+
"create_notebook(part1_cells, part1_path)\n",
5091+
"create_notebook(part2_cells, part2_path)\n",
5092+
"create_notebook(part3_cells, part3_path)\n",
5093+
"\n",
5094+
"part1_path, part2_path, part3_path\n"
5095+
],
5096+
"metadata": {
5097+
"id": "ihVx3DA-ZL8E"
5098+
},
5099+
"execution_count": null,
5100+
"outputs": []
5101+
},
49235102
{
49245103
"cell_type": "markdown",
49255104
"metadata": {
@@ -5007,7 +5186,7 @@
50075186
"metadata": {
50085187
"colab": {
50095188
"provenance": [],
5010-
"toc_visible": true
5189+
"include_colab_link": true
50115190
},
50125191
"kernelspec": {
50135192
"display_name": "Python 3",
@@ -5028,4 +5207,4 @@
50285207
},
50295208
"nbformat": 4,
50305209
"nbformat_minor": 0
5031-
}
5210+
}

0 commit comments

Comments
 (0)