-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_gan_3phase.py
659 lines (535 loc) · 28.2 KB
/
train_gan_3phase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import argparse
import numpy as np
from torch.utils.data import DataLoader
import torchvision
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt
from torch.autograd import Variable
import math
import os
from tensorboardX import SummaryWriter
import time
import datetime
from gan_model import CS_Dataset
from gan_model import LeftDiscriminator, RightDiscriminator, ExPGenerator
from gan_model import initialize_weights
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_folder", type=str, help="dataset folder, directory which includes left8bit and gtFine folders")
parser.add_argument("--model_save", type=str, help='specify the directory to save models')
parser.add_argument("--num_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--mini_D_num_epochs", type=int, default=3, help="number of epochs of training D")
parser.add_argument("--mini_G_num_epochs", type=int, default=1, help="number of epochs of training G")
parser.add_argument("--batch_size", type=int, default=8, help="size of the batches")
parser.add_argument("--lr_gen", type=float, default=0.0003, help="adam: learning rate for the generator")
parser.add_argument("--lr_disc", type=float, default=0.0001, help="adam: learning rate for the discriminator")
parser.add_argument("--lambda_seg", type=float, default=0.2, help="loss scale term for segmentation loss")
parser.add_argument("--lambda_disc", type=float, default=1.0, help="loss scale term for discriminator")
parser.add_argument("--lambda_recon", type=float, default=1.0, help="loss scale term for reconstruction")
parser.add_argument("--b1_gen", type=float, default=0.5, help="adam: decay of first order momentum of gradient, for the generator")
parser.add_argument("--b2_gen", type=float, default=0.999, help="adam: decay of first order momentum of gradient, for the generator")
parser.add_argument("--b1_disc", type=float, default=0.5, help="adam: decay of first order momentum of gradient, for the discriminator")
parser.add_argument("--b2_disc", type=float, default=0.999, help="adam: decay of first order momentum of gradient, for the discriminator")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--n_critic", type=int, default=5, help="number of training steps for discriminator per iter")
parser.add_argument("--clip_value", type=float, default=0.01, help="lower and upper clip value for disc. weights")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
parser.add_argument("--log_frequency", type=int, default=20, help="log frequency in terms of steps")
parser.add_argument("--logfile_name", type=str, default='logs.txt')
parser.add_argument("--model_load", type=str, default="")
opt = parser.parse_args()
def get_model_name(opt):
writer_log_dir = os.path.join(opt.model_save, 'models')
curr_time = datetime.datetime.now()
writer_log_dir = os.path.join(writer_log_dir, str(curr_time.year) + '-' + str('%02d' %curr_time.month) + '-' + str('%02d' %curr_time.day) + '-' + str('%02d' %curr_time.hour) +str('%02d' %curr_time.minute)+ str('%02d' %curr_time.second)) #'_' + str(args.lr)
if not os.path.exists(writer_log_dir):
os.makedirs(writer_log_dir)
return writer_log_dir
model_save_dir = get_model_name(opt)
print('#'*50)
print('MODEL DIRECTORY: ', model_save_dir)
def save_opts(args):
"""
Save options to disk
"""
models_dir = model_save_dir
if not os.path.exists(models_dir):
os.makedirs(models_dir)
to_save = args.__dict__.copy()
with open(os.path.join(models_dir, 'opt.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def logging(str, log_file=opt.logfile_name, to_stdout=True):
with open(os.path.join(model_save_dir, log_file), 'a') as f:
f.write(str + '\n')
if to_stdout:
print(str)
def to_categorical_np(y, num_classes):
""" 1-hot encodes a tensor """
return np.eye(num_classes, dtype='uint8')[y]
def to_categorical_torch(y, num_columns):
"""Returns one-hot encoded Variable"""
y_cat = np.zeros((y.shape[0], num_columns))
y_cat[range(y.shape[0]), y] = 1.0
return Variable(FloatTensor(y_cat))
def write_losses_d(loss_D_left,loss_D_right):
"""
Writes discriminator losses to the loss dictionary
"""
losses = {}
losses["D_losses/loss_D_left"] = loss_D_left
losses["D_losses/loss_D_right"] = loss_D_right
return losses
def write_losses_g(loss, loss_seg,loss_D_left,loss_D_right,loss_recon_left,loss_recon_right):
"""
Writes generator losses to the loss dictionary
"""
losses = {}
losses["G_losses/loss_seg"] = loss_seg
losses["G_losses/loss_D_left"] = loss_D_left
losses["G_losses/loss_D_right"] = loss_D_right
losses["G_losses/loss_recon_left"] = loss_recon_left
losses["G_losses/loss_recon_right"] = loss_recon_right
losses["total_loss"] = loss
return losses
def call_logger(batch_idx, opt, total_step, mode="train"):
"""
Checks if results will be logged to tensorboard based on the step number
"""
early_phase = batch_idx % opt.log_frequency == 0 and total_step < 2000
late_phase = total_step % 2000 == 0
return (early_phase or late_phase)
def save_model(left_D, right_D, generator_G,epoch=0, best_model=False):
logging("Saving models to {} ".format(model_save_dir))
if(best_model):
torch.save({
"left_disc": left_D.state_dict(),
"right_disc": right_D.state_dict(),
"generator": generator_G.state_dict()
},
os.path.join(model_save_dir, "best_model.pt"))
else:
torch.save({
"left_disc": left_D.state_dict(),
"right_disc": right_D.state_dict(),
"generator": generator_G.state_dict()
},
os.path.join(model_save_dir, "model"+str(epoch)+".pt"))
def load_model(exp_img_shape, dir_load=opt.model_load):
logging('Loading models from {} '.format(dir_load))
#loaded = torch.load(os.path.join(model_save_dir, "model.pt"))
loaded = torch.load(dir_load)
left_D = LeftDiscriminator(exp_img_shape)
right_D = RightDiscriminator(exp_img_shape)
generator_G = ExPGenerator()
left_D.load_state_dict(loaded.get('left_disc'))
right_D.load_state_dict(loaded.get('right_disc'))
generator_G.load_state_dict(loaded.get('generator'))
return left_D, right_D, generator_G
def img_denorm(img):
"""
Denormalizes the images obtained from the generator, by back transforming with
the mean and std of the images in the Cityscapes dataset
"""
mean = np.asarray([0.28689554, 0.32513303, 0.28389177])
std = np.asarray([0.18696375, 0.19017339, 0.18720214])
denormalize = transforms.Normalize((-1 * mean / std), (1.0 / std))
res = img.squeeze(0)
res = denormalize(res)
#Image needs to be clipped since the denormalize function will map some
#values below 0 and above 1
res = torch.clamp(res, 0, 1)
return(res)
def log_tbx(writers, mode, batch, outputs, left_weights, right_weights, gen_weights,losses_d, losses_g, total_step):
"""
Write an event to the tensorboard events file
"""
writer = writers[mode]
for l, v in losses_d.items():
writer.add_scalar("{}".format(l), v, total_step)
for l, v in losses_g.items():
writer.add_scalar("{}".format(l), v, total_step)
for j in range(min(4, opt.batch_size)):
writer.add_image(
"input/{}".format(j),
img_denorm(batch[("img",0)][j]).data, total_step)
writer.add_image(
"generated/{}".format(j),
img_denorm(outputs[("generated")][j]), total_step)
writer.add_image(
"generated_normalized/{}".format(j),
outputs[("generated")][j], total_step)
writer.add_image(
"seg/{}".format(j),
np.expand_dims((30*torch.argmax(batch[("segm",0)][j], dim=0)).numpy(),axis=0).astype(np.uint8), total_step)
writer.add_image(
"seg_generated/{}".format(j),
np.expand_dims((30*torch.argmax(outputs[("generated_segs")][j], dim=0)).cpu().data,axis=0).astype(np.uint8), total_step)
for l, v in enumerate(left_weights):
writer.add_histogram("left_disc_weights/layer:{}".format(l), v, total_step)
for l, v in enumerate(right_weights):
writer.add_histogram("right_disc_weights/layer:{}".format(l), v, total_step)
for l, v in enumerate(gen_weights):
writer.add_histogram("generator_weights/layer:{}".format(l), v, total_step)
def get_weights(net):
"""
Gets layer weights to bbe logged to the tensorboard
"""
weight= []
for module in net.modules():
if isinstance(module, nn.Conv2d):
weights = module.weight
weights = weights.reshape(-1).detach().cpu().numpy()
weight.append(weights)
return weight
##### MAIN
logging(str(opt))
exp_img_shape = (3, 256, 384)
cuda = True if torch.cuda.is_available() else False
print('cuda status: ', cuda)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# initialization of the dataloaders
train_dataset = CS_Dataset(opt.dataset_folder, split='train', mode='fine', target_type='semantic', transform=None, target_transform=None, transforms=None)
val_dataset = CS_Dataset(opt.dataset_folder, split='val', mode='fine', target_type='semantic', transform=None, target_transform=None, transforms=None)
train_loader = DataLoader(
train_dataset, opt.batch_size, True,
num_workers=1, pin_memory=True, drop_last=True)
val_loader = DataLoader(
val_dataset, opt.batch_size, True,
num_workers=1, pin_memory=True, drop_last=True)
# if model_load argument is non-empty, loads the model in the specified directory before starting the training
if opt.model_load == "":
left_D = LeftDiscriminator(exp_img_shape)
right_D = RightDiscriminator(exp_img_shape)
generator_G = ExPGenerator()
else:
left_D, right_D, generator_G = load_model(exp_img_shape)
if cuda:
left_D.cuda()
right_D.cuda()
generator_G.cuda()
# initialization of the optimizers
optimizer_G = torch.optim.Adam(generator_G.parameters(), lr=opt.lr_gen, betas=(opt.b1_gen, opt.b2_gen))
optimizer_D_left = torch.optim.Adam(left_D.parameters(), lr=opt.lr_disc, betas=(opt.b1_disc, opt.b2_disc))
optimizer_D_right = torch.optim.Adam(right_D.parameters(), lr=opt.lr_disc, betas=(opt.b1_disc, opt.b2_disc))
adversarial_loss = torch.nn.BCELoss()
def add_noise(ins, is_training=True, mean=0, stddev=0.01):
"""
Adds noise to the 'real' images before using them in the discriminator training
"""
if is_training:
noise = Variable(ins.data.new(ins.size()).normal_(mean, stddev))
return ins + noise
return ins
# currently only returns the segmentation map obtained from the generator without masking
def mask_segm(full_segm, cropped_segm):
return full_segm
# defining the weight matrix for segmentation and reconstruction losses, so that the points at the transition part would be considered more when calculating the losses
mask_row = np.zeros((1,512))
def sigmoid(start=0,end=128, c1=0.1,c2=0):
x = np.arange(start,end)
return (1 / (1 + np.exp(-1 * c1 * (x-c2))))
mask_row[0,0:128] = sigmoid(0,128,c2=64)
mask_row[0,128:256] = 1-sigmoid(128,256,c2=192)
mask_row[0,256:384] = sigmoid(256,384,c2=320)
mask_row[0,384:512] = 1-sigmoid(384,512,c2=448)
mask_tensor = torch.from_numpy(np.squeeze(mask_row)).float()
mask_tensor_rec_left = torch.from_numpy(np.squeeze(mask_row[:,0:128])).float()
mask_tensor_rec_right = torch.from_numpy(np.squeeze(mask_row[:,384:512])).float()
total_step = 0
mini_D_num_epochs = opt.mini_D_num_epochs
mini_G_num_epochs = opt.mini_G_num_epochs
writers = {}
for mode in ["train", "val"]:
writers[mode] = SummaryWriter(os.path.join(model_save_dir, mode))
best_val_loss = None
# make the networks multi-gpu available
if torch.cuda.device_count() > 1:
print("There are", torch.cuda.device_count(), "gpus available.")
left_D = nn.DataParallel(left_D)
right_D= nn.DataParallel(right_D)
generator_G = nn.DataParallel(generator_G)
# Training mode
print('Switched to training mode')
# Phase 1 - Only the generator is being trained
print("####################################### PHASE 1 #########################################")
print('Phase 1 - Pre-training the generator')
for epoch in range(15):
print('Phase 1 - Epoch ',epoch)
generator_G.train()
for batch_idx, batch in enumerate(train_loader):
weight_segmentation = mask_tensor.repeat(batch['cropped'].size(0), 256, 1)
weight_rec_left = mask_tensor_rec_left.repeat(batch['cropped'].size(0), 3, 256, 1)
weight_rec_right = mask_tensor_rec_right.repeat(batch['cropped'].size(0), 3, 256, 1)
if cuda:
weight_segmentation = weight_segmentation.cuda()
weight_rec_left = weight_rec_left.cuda()
weight_rec_right = weight_rec_right.cuda()
source_img = batch["cropped"]
source_segm = batch["cropped_segm"]
true_im = batch["img",0]
true_segm = batch["segm",0]
source_img = source_img.cuda()
source_segm = source_segm.cuda()
true_im = true_im.cuda()
true_segm = true_segm.cuda()
masked_target = mask_segm(true_segm, source_segm).to(torch.int64)
orj_left = true_im[:,:,:, 0:128]
orj_right = true_im[:,:,:, -128:]
gen_fake_left, gen_fake_right, gen_fake_seg = generator_G(source_img, source_segm)
optimizer_G.zero_grad()
_, masked_target = masked_target.max(dim=1)
loss_seg = nn.CrossEntropyLoss(reduction='none')(torch.squeeze(gen_fake_seg), torch.squeeze(masked_target))
loss_seg = weight_segmentation*loss_seg # Ensure that weights are scaled appropriately
loss_seg = torch.mean(loss_seg) # Sums the loss per image
loss_recon_left = nn.MSELoss(reduction='none')(gen_fake_left, orj_left)
loss_recon_left = weight_rec_left*loss_recon_left # Ensure that weights are scaled appropriately
loss_recon_left = torch.mean(loss_recon_left) # Sums the loss per image
loss_recon_right = nn.MSELoss(reduction='none')(gen_fake_right, orj_right)
loss_recon_right = weight_rec_right*loss_recon_right # Ensure that weights are scaled appropriately
loss_recon_right = torch.mean(loss_recon_right) # Sums the loss per image
loss = opt.lambda_seg * loss_seg + opt.lambda_recon*loss_recon_left + opt.lambda_recon*loss_recon_right
loss.backward()
optimizer_G.step()
torch.save({
"left_disc": left_D.state_dict(),
"right_disc": right_D.state_dict(),
"generator": generator_G.state_dict()
},
os.path.join(model_save_dir, "phase1.pt"))
# Phase 2 - Only the left and right discriminators are being trained
print("####################################### PHASE 2 #########################################")
print('Phase 2 - Pre-training the discriminators')
total_step = 0
for epoch in range(1):
print('Phase 2 - Epoch ',epoch)
left_D.train()
right_D.train()
for batch_idx, batch in enumerate(train_loader):
weight_segmentation = mask_tensor.repeat(batch['cropped'].size(0), 256, 1)
weight_rec_left = mask_tensor_rec_left.repeat(batch['cropped'].size(0), 3, 256, 1)
weight_rec_right = mask_tensor_rec_right.repeat(batch['cropped'].size(0), 3, 256, 1)
if cuda:
weight_segmentation = weight_segmentation.cuda()
weight_rec_left = weight_rec_left.cuda()
weight_rec_right = weight_rec_right.cuda()
source_img = batch["cropped"]
source_segm = batch["cropped_segm"]
true_im = add_noise(batch["img",0]) #Before cropping original image noise needs to be added
source_img = source_img.cuda()
source_segm = source_segm.cuda()
true_im = true_im.cuda()
gen_fake_left, gen_fake_right, gen_fake_seg = generator_G(source_img, source_segm)
fake_left = torch.cat((gen_fake_left.detach(), source_img), dim=3)
fake_right= torch.cat((source_img, gen_fake_right.detach()), dim=3)
true_left = true_im[:, : , :, 0:exp_img_shape[-1]]
true_right = true_im[:, :, : , -exp_img_shape[-1]:]
true_lbl = Variable(Tensor(source_img.size(0), 1).fill_(1), requires_grad=False)
fake_lbl = Variable(Tensor(source_img.size(0), 1).fill_(0), requires_grad=False)
true_lbl = true_lbl.cuda()
fake_lbl = fake_lbl.cuda()
lbls = torch.squeeze(torch.cat((true_lbl, fake_lbl), dim=0))
left_imgs = torch.cat((true_left, fake_left), dim=0)
right_imgs = torch.cat((true_right, fake_right), dim=0)
lbl_est_left = left_D(left_imgs)
loss_D_left = adversarial_loss(torch.squeeze(lbl_est_left), torch.squeeze(lbls))
optimizer_D_left.zero_grad()
loss_D_left.backward()
optimizer_D_left.step()
lbl_est_right = right_D(right_imgs)
loss_D_right =adversarial_loss(torch.squeeze(lbl_est_right), torch.squeeze(lbls))
optimizer_D_right.zero_grad()
loss_D_right.backward()
optimizer_D_right.step()
torch.save({
"left_disc": left_D.state_dict(),
"right_disc": right_D.state_dict(),
"generator": generator_G.state_dict()
},
os.path.join(model_save_dir, "phase2.pt"))
# Phase 3 - The generator and the discriminators are being trained one after another within each epoch
print("####################################### PHASE 3 #########################################")
print('Phase 3 - Adversarial Training')
total_step = 0
for epoch in range(opt.num_epochs):
print('#'*30)
print('Epoch:', epoch)
#Switch models to training mode
left_D.train()
right_D.train()
generator_G.train()
for batch_idx, batch in enumerate(train_loader):
weight_segmentation = mask_tensor.repeat(batch['cropped'].size(0), 256, 1)
weight_rec_left = mask_tensor_rec_left.repeat(batch['cropped'].size(0), 3, 256, 1)
weight_rec_right = mask_tensor_rec_right.repeat(batch['cropped'].size(0), 3, 256, 1)
if cuda:
weight_segmentation = weight_segmentation.cuda()
weight_rec_left = weight_rec_left.cuda()
weight_rec_right = weight_rec_right.cuda()
for epoch_D in range(mini_D_num_epochs):
#print('epoch_D: ', epoch_D)
source_img = batch["cropped"]
source_segm = batch["cropped_segm"]
true_im = add_noise(batch["img",0]) #Before cropping original image noise needs to be added
source_img = source_img.cuda()
source_segm = source_segm.cuda()
true_im = true_im.cuda()
gen_fake_left, gen_fake_right, gen_fake_seg = generator_G(source_img, source_segm)
fake_left = torch.cat((gen_fake_left.detach(), source_img), dim=3)
fake_right= torch.cat((source_img, gen_fake_right.detach()), dim=3)
true_left = true_im[:, : , :, 0:exp_img_shape[-1]]
true_right = true_im[:, :, : , -exp_img_shape[-1]:]
true_lbl = Variable(Tensor(source_img.size(0), 1).fill_(1), requires_grad=False)
fake_lbl = Variable(Tensor(source_img.size(0), 1).fill_(0), requires_grad=False)
true_lbl = true_lbl.cuda()
fake_lbl = fake_lbl.cuda()
lbls = torch.squeeze(torch.cat((true_lbl, fake_lbl), dim=0))
left_imgs = torch.cat((true_left, fake_left), dim=0)
right_imgs = torch.cat((true_right, fake_right), dim=0)
lbl_est_left = left_D(left_imgs)
loss_D_left = adversarial_loss(torch.squeeze(lbl_est_left), torch.squeeze(lbls))
optimizer_D_left.zero_grad()
loss_D_left.backward()
optimizer_D_left.step()
lbl_est_right = right_D(right_imgs)
loss_D_right =adversarial_loss(torch.squeeze(lbl_est_right), torch.squeeze(lbls))
optimizer_D_right.zero_grad()
loss_D_right.backward()
optimizer_D_right.step()
losses_d = write_losses_d(loss_D_left,loss_D_right)
for epoch_G in range(mini_G_num_epochs):
source_img = batch["cropped"]
source_segm = batch["cropped_segm"]
true_im = batch["img",0]
true_segm = batch["segm",0]
source_img = source_img.cuda()
source_segm = source_segm.cuda()
true_im = true_im.cuda()
true_segm = true_segm.cuda()
masked_target = mask_segm(true_segm, source_segm).to(torch.int64)
orj_left = true_im[:,:,:, 0:128]
orj_right = true_im[:,:,:, -128:]
gen_fake_left, gen_fake_right, gen_fake_seg = generator_G(source_img, source_segm)
fake_left = torch.cat((gen_fake_left, source_img), dim=3)
fake_right= torch.cat((source_img, gen_fake_right), dim=3)
fake_lbl = Variable(Tensor(source_img.size(0), 1).fill_(0.0), requires_grad=False)
fake_lbl = fake_lbl.cuda()
true_lbl = Variable(Tensor(source_img.size(0), 1).fill_(1.0), requires_grad=False)
true_lbl = true_lbl.cuda()
#GET DISCRIMINATOR RESULTS
lbl_est_left = left_D(fake_left)
lbl_est_right = right_D(fake_right)
optimizer_G.zero_grad()
_, masked_target = masked_target.max(dim=1)
loss_seg = nn.CrossEntropyLoss(reduction='none')(torch.squeeze(gen_fake_seg), torch.squeeze(masked_target))
loss_seg = weight_segmentation*loss_seg # Ensure that weights are scaled appropriately
loss_seg = torch.mean(loss_seg) # Sums the loss per image
loss_D_left_g = adversarial_loss(torch.squeeze(lbl_est_left), torch.squeeze(true_lbl))
loss_D_right_g = adversarial_loss(torch.squeeze(lbl_est_right), torch.squeeze(true_lbl))
loss_recon_left = nn.MSELoss(reduction='none')(gen_fake_left, orj_left)
loss_recon_left = weight_rec_left*loss_recon_left # Ensure that weights are scaled appropriately
loss_recon_left = torch.mean(loss_recon_left) # Sums the loss per image
loss_recon_right = nn.MSELoss(reduction='none')(gen_fake_right, orj_right)
loss_recon_right = weight_rec_right*loss_recon_right # Ensure that weights are scaled appropriately
loss_recon_right = torch.mean(loss_recon_right) # Sums the loss per image
loss = opt.lambda_seg * loss_seg + opt.lambda_disc * loss_D_left_g + opt.lambda_disc * loss_D_right_g + opt.lambda_recon*loss_recon_left + opt.lambda_recon*loss_recon_right
loss.backward()
optimizer_G.step()
losses_g = write_losses_g(loss, loss_seg,loss_D_left_g,loss_D_right_g,loss_recon_left,loss_recon_right)
total_step += 1
left_disc_weights= get_weights(left_D)
right_disc_weights= get_weights(right_D)
gen_weights= get_weights(generator_G)
if call_logger(batch_idx, opt, total_step):
outputs = {}
outputs['generated']= torch.cat((fake_left,gen_fake_right), dim=3)
outputs['generated_segs'] = gen_fake_seg
log_tbx(writers, "train", batch, outputs, left_disc_weights, right_disc_weights,gen_weights, losses_d, losses_g, total_step)
# VALIDATION
# Switch models to evaluation mode
print('Switched to eval mode')
left_D.eval()
right_D.eval()
generator_G.eval()
val_loss = 0
for batch_idx, batch in enumerate(val_loader):
weight_segmentation = mask_tensor.repeat(batch['cropped'].size(0), 256, 1)
weight_rec_left = mask_tensor_rec_left.repeat(batch['cropped'].size(0), 3, 256, 1)
weight_rec_right = mask_tensor_rec_right.repeat(batch['cropped'].size(0), 3, 256, 1)
if cuda:
weight_segmentation = weight_segmentation.cuda()
weight_rec_left = weight_rec_left.cuda()
weight_rec_right = weight_rec_right.cuda()
source_img = batch["cropped"]
source_segm = batch["cropped_segm"]
true_im = batch["img",0]
true_segm = batch["segm",0]
source_img = source_img.cuda()
source_segm = source_segm.cuda()
true_im = true_im.cuda()
true_segm = true_segm.cuda()
masked_target = mask_segm(true_segm, source_segm).to(torch.int64)
orj_left = true_im[:,:,:, 0:128]
orj_right = true_im[:,:,:, -128:]
gen_fake_left, gen_fake_right, gen_fake_seg = generator_G(source_img, source_segm)
fake_left = torch.cat((gen_fake_left, source_img), dim=3)
fake_right= torch.cat((source_img, gen_fake_right), dim=3)
true_left = true_im[:, : , :, 0:exp_img_shape[-1]]
true_right = true_im[:, :, : , -exp_img_shape[-1]:]
true_lbl = Variable(Tensor(source_img.size(0), 1).fill_(1.0), requires_grad=False)
fake_lbl = Variable(Tensor(source_img.size(0), 1).fill_(0.0), requires_grad=False)
true_lbl = true_lbl.cuda()
fake_lbl = fake_lbl.cuda()
lbls = torch.squeeze(torch.cat((true_lbl, fake_lbl), dim=0))
left_imgs = torch.cat((true_left, fake_left), dim=0)
right_imgs = torch.cat((true_right, fake_right), dim=0)
# for the calculation of the disc loss
lbl_est_left = left_D(left_imgs)
loss_D_left = adversarial_loss(torch.squeeze(lbl_est_left), torch.squeeze(lbls))
lbl_est_right = right_D(right_imgs)
loss_D_right =adversarial_loss(torch.squeeze(lbl_est_right), torch.squeeze(lbls))
# get discriminator outputs
# for the calculation of the Gen loss
lbl_est_left = left_D(fake_left)
lbl_est_right = right_D(fake_right)
optimizer_G.zero_grad()
_, masked_target = masked_target.max(dim=1)
#nn.CrossEntropyLoss()(out, Variable(targets))
loss_seg = nn.CrossEntropyLoss(reduction='none')(torch.squeeze(gen_fake_seg), torch.squeeze(masked_target))
loss_seg = weight_segmentation*loss_seg # Ensure that weights are scaled appropriately
loss_seg = torch.mean(loss_seg) # Sums the loss per image
loss_D_left_g = adversarial_loss(torch.squeeze(lbl_est_left), torch.squeeze(true_lbl))
loss_D_right_g = adversarial_loss(torch.squeeze(lbl_est_right), torch.squeeze(true_lbl))
loss_recon_left = nn.MSELoss(reduction='none')(gen_fake_left, orj_left)
loss_recon_left = weight_rec_left*loss_recon_left # Ensure that weights are scaled appropriately
loss_recon_left = torch.mean(loss_recon_left) # Sums the loss per image
loss_recon_right = nn.MSELoss(reduction='none')(gen_fake_right, orj_right)
loss_recon_right = weight_rec_right*loss_recon_right # Ensure that weights are scaled appropriately
loss_recon_right = torch.mean(loss_recon_right) # Sums the loss per image
loss = opt.lambda_seg * loss_seg + opt.lambda_disc * loss_D_left_g + opt.lambda_disc * loss_D_right_g + opt.lambda_recon*loss_recon_left + opt.lambda_recon*loss_recon_right
batch_loss = loss.item()
val_loss+=batch_loss
logging("Epoch {}: validation_loss={}, best_validation_loss={} ".format(epoch, val_loss ,best_val_loss))
# last batch
losses_d = write_losses_d(loss_D_left,loss_D_right)
losses_g = write_losses_g(loss, loss_seg,loss_D_left_g,loss_D_right_g,loss_recon_left,loss_recon_right)
left_disc_weights= get_weights(left_D)
right_disc_weights= get_weights(right_D)
gen_weights= get_weights(generator_G)
outputs = {}
outputs['generated']= torch.cat((fake_left,gen_fake_right), dim=3)
outputs['generated_segs'] = gen_fake_seg
log_tbx(writers, "val", batch, outputs, left_disc_weights, right_disc_weights,gen_weights, losses_d, losses_g, total_step)
# save model every 5 epochs, or if the current validation loss is smaller than the best validation loss so far
if epoch % 5 == 0 or val_loss < best_val_loss:
if epoch % 5 == 0:
save_model(left_D, right_D, generator_G, epoch, best_model=False)
else:
save_model(left_D, right_D, generator_G, epoch, best_model=True)
if best_val_loss is None or val_loss < best_val_loss:
best_val_loss = val_loss