-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsomsphere.py
543 lines (495 loc) · 21.3 KB
/
somsphere.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
"""
.. module:: SOMZ
.. moduleauthor:: Matias Carrasco Kind
"""
from __future__ import print_function
from builtins import zip
from builtins import range
from builtins import object
__author__ = 'Matias Carrasco Kind'
import numpy
import copy
import sys, os, random
import warnings
warnings.simplefilter("ignore", RuntimeWarning)
try:
import somF
SF90 = True
except:
SF90 = False
def get_index(ix, iy, nx, ny):
return iy * nx + ix
def get_pair(ii, nx, ny):
iy = int(numpy.floor(ii / nx))
ix = ii % nx
return ix, iy
def get_ns(ix, iy, nx, ny, index=False):
"""
Get neighbors for rectangular grid given its
coordinates and size of grid
:param int ix: Coordinate in the x-axis
:param int iy: Coordinate in the y-axis
:param int nx: Number fo cells along the x-axis
:param int ny: Number fo cells along the y-axis
:param bool index: Return indexes in the map format
:return: Array of indexes for direct neighbors
"""
ns = []
if ix - 1 >= 0: ns.append((ix - 1, iy))
if iy - 1 >= 0: ns.append((ix, iy - 1))
if ix + 1 < nx: ns.append((ix + 1, iy))
if iy + 1 < ny: ns.append((ix, iy + 1))
if ix - 1 >= 0 and iy - 1 >= 0: ns.append((ix - 1, iy - 1))
if ix - 1 >= 0 and iy + 1 < ny: ns.append((ix - 1, iy + 1))
if ix + 1 < nx and iy + 1 < ny: ns.append((ix + 1, iy + 1))
if ix + 1 < nx and iy - 1 >= 0: ns.append((ix + 1, iy - 1))
ns = numpy.array(ns)
if not index:
return ns
if index:
ins = []
for i in range(len(ns)):
ins.append(get_index(ns[i, 0], ns[i, 1], nx, ny))
return numpy.array(ins)
def get_ns_hex(ix, iy, nx, ny, index=False):
"""
Get neighbors for hexagonal grid given its coordinates
and size of grid
Same parameters as :func:`get_ns`
"""
ns = []
even = False
if iy % 2 == 0: even = True
if ix - 1 >= 0: ns.append((ix - 1, iy))
if ix + 1 < nx: ns.append((ix + 1, iy))
if iy - 1 >= 0: ns.append((ix, iy - 1))
if iy + 1 < ny: ns.append((ix, iy + 1))
if even and ix - 1 >= 0 and iy - 1 >= 0: ns.append((ix - 1, iy - 1))
if even and ix - 1 >= 0 and iy + 1 < ny: ns.append((ix - 1, iy + 1))
if not even and ix + 1 < nx and iy - 1 >= 0: ns.append((ix + 1, iy - 1))
if not even and ix + 1 < nx and iy + 1 < ny: ns.append((ix + 1, iy + 1))
ns = numpy.array(ns)
if not index:
return ns
if index:
ins = []
for i in range(len(ns)):
ins.append(get_index(ns[i, 0], ns[i, 1], nx, ny))
return numpy.array(ins)
def geometry(top, Ntop, periodic='no'):
"""
Pre-compute distances between cells in a given topology
and store it on a distLib array
:param str top: Topology ('grid','hex','sphere')
:param int Ntop: Size of map, for grid Size=Ntop*Ntop,
for hex Size=Ntop*(Ntop+1[2]) if Ntop is even[odd] and for sphere
Size=12*Ntop*Ntop and top must be power of 2
:param str periodic: Use periodic boundary conditions ('yes'/'no'), valid for 'hex' and 'grid' only
:return: 2D array with distances pre computed between cells and total number of units
:rtype: 2D float array, int
"""
if top == 'sphere':
try:
import healpy as hpx
except:
print('Error: healpy module not found, use grid or hex topologies')
sys.exit(0)
if top == 'sphere':
nside = Ntop
npix = 12 * nside ** 2
distLib = numpy.zeros((npix, npix))
for i in range(npix):
ai = hpx.pix2ang(nside, i)
for j in range(i + 1, npix):
aj = hpx.pix2ang(nside, j)
distLib[i, j] = hpx.rotator.angdist(ai, aj)
distLib[j, i] = distLib[i, j]
distLib[numpy.where(numpy.isnan(distLib))] = numpy.pi
if top == 'grid':
nx = Ntop
ny = Ntop
npix = nx * ny
mapxy = numpy.mgrid[0:1:complex(0, nx), 0:1:complex(0, ny)]
mapxy = numpy.reshape(mapxy, (2, npix))
bX = mapxy[1]
bY = mapxy[0]
dx = 1. / (nx - 1)
dy = 1. / (ny - 1)
distLib = numpy.zeros((npix, npix))
if periodic == 'no':
for i in range(npix):
for j in range(i + 1, npix):
distLib[i, j] = numpy.sqrt((bX[i] - bX[j]) ** 2 + (bY[i] - bY[j]) ** 2)
distLib[j, i] = distLib[i, j]
if periodic == 'yes':
for i in range(npix):
for j in range(i + 1, npix):
s0 = numpy.sqrt((bX[i] - bX[j]) ** 2 + (bY[i] - bY[j]) ** 2)
s1 = numpy.sqrt((bX[i] - (bX[j] + 1. + dx)) ** 2 + (bY[i] - bY[j]) ** 2)
s2 = numpy.sqrt((bX[i] - (bX[j] + 1. + dx)) ** 2 + (bY[i] - (bY[j] + 1. + dy)) ** 2)
s3 = numpy.sqrt((bX[i] - (bX[j] + 0.)) ** 2 + (bY[i] - (bY[j] + 1. + dy)) ** 2)
s4 = numpy.sqrt((bX[i] - (bX[j] - 1. - dx)) ** 2 + (bY[i] - (bY[j] + 1. + dy)) ** 2)
s5 = numpy.sqrt((bX[i] - (bX[j] - 1. - dx)) ** 2 + (bY[i] - (bY[j] + 0.)) ** 2)
s6 = numpy.sqrt((bX[i] - (bX[j] - 1. - dx)) ** 2 + (bY[i] - (bY[j] - 1. - dy)) ** 2)
s7 = numpy.sqrt((bX[i] - (bX[j] + 0.)) ** 2 + (bY[i] - (bY[j] - 1. - dy)) ** 2)
s8 = numpy.sqrt((bX[i] - (bX[j] + 1. + dx)) ** 2 + (bY[i] - (bY[j] - 1. - dy)) ** 2)
distLib[i, j] = numpy.min((s0, s1, s2, s3, s4, s5, s6, s7, s8))
distLib[j, i] = distLib[i, j]
if top == 'hex':
nx = Ntop
ny = Ntop
xL = numpy.arange(0, nx, 1.)
dy = 0.8660254
yL = numpy.arange(0, ny, dy)
ny = len(yL)
nx = len(xL)
npix = nx * ny
bX = numpy.zeros(nx * ny)
bY = numpy.zeros(nx * ny)
kk = 0
last = ny * dy
for jj in range(ny):
for ii in range(nx):
if jj % 2 == 0: off = 0.
if jj % 2 == 1: off = 0.5
bX[kk] = xL[ii] + off
bY[kk] = yL[jj]
kk += 1
distLib = numpy.zeros((npix, npix))
if periodic == 'no':
for i in range(npix):
for j in range(i + 1, npix):
distLib[i, j] = numpy.sqrt((bX[i] - bX[j]) ** 2 + (bY[i] - bY[j]) ** 2)
distLib[j, i] = distLib[i, j]
if periodic == 'yes':
for i in range(npix):
for j in range(i + 1, npix):
s0 = numpy.sqrt((bX[i] - bX[j]) ** 2 + (bY[i] - bY[j]) ** 2)
s1 = numpy.sqrt((bX[i] - (bX[j] + nx)) ** 2 + (bY[i] - bY[j]) ** 2)
s2 = numpy.sqrt((bX[i] - (bX[j] + nx)) ** 2 + (bY[i] - (bY[j] + last)) ** 2)
s3 = numpy.sqrt((bX[i] - (bX[j] + 0)) ** 2 + (bY[i] - (bY[j] + last)) ** 2)
s4 = numpy.sqrt((bX[i] - (bX[j] - nx)) ** 2 + (bY[i] - (bY[j] + last)) ** 2)
s5 = numpy.sqrt((bX[i] - (bX[j] - nx)) ** 2 + (bY[i] - (bY[j] + 0)) ** 2)
s6 = numpy.sqrt((bX[i] - (bX[j] - nx)) ** 2 + (bY[i] - (bY[j] - last)) ** 2)
s7 = numpy.sqrt((bX[i] - (bX[j] + 0)) ** 2 + (bY[i] - (bY[j] - last)) ** 2)
s8 = numpy.sqrt((bX[i] - (bX[j] + nx)) ** 2 + (bY[i] - (bY[j] - last)) ** 2)
distLib[i, j] = numpy.min((s0, s1, s2, s3, s4, s5, s6, s7, s8))
distLib[j, i] = distLib[i, j]
return distLib, npix
def is_power_2(value):
"""
Check if passed value is a power of 2
"""
return value!=0 and ((value & (value- 1)) == 0)
def get_alpha(t, alphas, alphae, NT):
"""
Get value of alpha at a given time
"""
return alphas * numpy.power(alphae / alphas, float(t) / float(NT))
def get_sigma(t, sigma0, sigmaf, NT):
"""
Get value of sigma at a given time
"""
return sigma0 * numpy.power(sigmaf / sigma0, float(t) / float(NT))
def h(bmu, mapD, sigma):
"""
Neighborhood function which quantifies how much cells around the best matching one are modified
:param int bmu: best matching unit
:param float mapD: array of distances computed with :func:`geometry`
"""
return numpy.exp(-(mapD[bmu] ** 2) / sigma ** 2)
class SelfMap(object):
"""
Create a som class instance
:param float X: Attributes array (all columns used)
:param float Y: Attribute to be predicted (not really needed, can be zeros)
:param str topology: Which 2D topology, 'grid', 'hex' or 'sphere'
:param str som_type: Which updating scheme to use 'online' or 'batch'
:param int Ntop: Size of map, for grid Size=Ntop*Ntop,
for hex Size=Ntop*(Ntop+1[2]) if Ntop is even[odd] and for sphere
Size=12*Ntop*Ntop and top must be power of 2
:param int iterations: Number of iteration the entire sample is processed
:param str periodic: Use periodic boundary conditions ('yes'/'no'), valid for 'hex' and 'grid' only
:param dict dict_dim: dictionary with attributes names
:param float astar: Initial value of alpha
:param float aend: End value of alpha
:param str importance: Path to the file with importance ranking for attributes, default is none
"""
def __init__(self, X, Y, topology='grid', som_type='online', Ntop=28, iterations=30, periodic='no', dict_dim='',
astart=0.8, aend=0.5, importance=None):
self.np, self.nDim = numpy.shape(X)
self.dict_dim = dict_dim
self.X = X
self.SF90 = SF90
self.Y = Y
self.aps = astart
self.ape = aend
self.top = topology
if topology=='sphere' and not is_power_2(Ntop):
print('Error, Ntop must be power of 2')
sys.exit(0)
self.stype = som_type
self.Ntop = Ntop
self.nIter = iterations
self.per = periodic
self.distLib, self.npix = geometry(self.top, self.Ntop, periodic=self.per)
if importance == None: importance = numpy.ones(self.nDim)
self.importance = importance / numpy.sum(importance)
def som_best_cell(self, inputs, return_vals=1):
"""
Return the closest cell to the input object
It can return more than one value if needed
"""
activations = numpy.sum(numpy.transpose([self.importance]) * (
numpy.transpose(numpy.tile(inputs, (self.npix, 1))) - self.weights) ** 2, axis=0)
if return_vals == 1:
best = numpy.argmin(activations)
return best, activations
else:
best_few = numpy.argsort(activations)
return best_few[0:return_vals], activations
def create_mapF(self, evol='no', inputs_weights=''):
"""
This functions actually create the maps, it uses
random values to initialize the weights
It uses a Fortran subroutine compiled with f2py
"""
if not self.SF90:
print()
print('Fortran module somF not found, use create_map instead or try' \
' f2py -c -m somF som.f90')
sys.exit(0)
if inputs_weights == '':
self.weights = (numpy.random.rand(self.nDim, self.npix)) + self.X[0][0]
else:
self.weights = inputs_weights
if self.stype == 'online':
self.weightsT = somF.map(self.X, self.nDim, self.nIter, self.distLib, self.np, self.weights,
self.importance, self.npix, self.aps, self.ape)
if self.stype == 'batch':
self.weightsT = somF.map_b(self.X, self.nDim, self.nIter, self.distLib, self.np, self.weights,
self.importance, self.npix)
self.weights = copy.deepcopy(self.weightsT)
def create_map(self, evol='no', inputs_weights='', random_order=True):
"""
This is same as above but uses python routines instead
"""
if inputs_weights == '':
self.weights = (numpy.random.rand(self.nDim, self.npix)) + self.X[0][0]
else:
self.weights = inputs_weights
self.NT = self.nIter * self.np
if self.stype == 'online':
tt = 0
sigma0 = self.distLib.max()
sigma_single = numpy.min(self.distLib[numpy.where(self.distLib > 0.)])
for it in range(self.nIter):
#get alpha, sigma
alpha = get_alpha(tt, self.aps, self.ape, self.NT)
sigma = get_sigma(tt, sigma0, sigma_single, self.NT)
if random_order:
index_random = random.sample(range(self.np), self.np)
else:
index_random = numpy.arange(self.np)
for i in range(self.np):
tt += 1
inputs = self.X[index_random[i]]
best, activation = self.som_best_cell(inputs)
self.weights += alpha * h(best, self.distLib, sigma) * numpy.transpose(
(inputs - numpy.transpose(self.weights)))
if evol == 'yes':
self.evaluate_map()
self.save_map(itn=it)
if self.stype == 'batch':
tt = 0
sigma0 = self.distLib.max()
sigma_single = numpy.min(self.distLib[numpy.where(self.distLib > 0.)])
for it in range(self.nIter):
#get alpha, sigma
sigma = get_sigma(tt, sigma0, sigma_single, self.NT)
accum_w = numpy.zeros((self.nDim, self.npix))
accum_n = numpy.zeros(self.npix)
for i in range(self.np):
tt += 1
inputs = self.X[i]
best, activation = self.som_best_cell(inputs)
for kk in range(self.nDim):
accum_w[kk, :] += h(best, self.distLib, sigma) * inputs[kk]
accum_n += h(best, self.distLib, sigma)
for kk in range(self.nDim):
self.weights[kk] = accum_w[kk] / accum_n
if evol == 'yes':
self.evaluate_map()
self.save_map(itn=it)
def evaluate_map(self, inputX='', inputY=''):
"""
This functions evaluates the map created using the input Y or a new Y (array of labeled attributes)
It uses the X array passed or new data X as well, the map doesn't change
:param float inputX: Use this if another set of values for X is wanted using
the weigths already computed
:param float inputY: One dimensional array of the values to be assigned to each cell in the map
based on the in-memory X passed
"""
self.yvals = {}
self.ivals = {}
if inputX == '':
inX = self.X
else:
inX = inputX
if inputY == '':
inY = self.Y
else:
inY = inputY
for i in range(len(inX)):
inputs = inX[i]
best, activation = self.som_best_cell(inputs)
if best not in self.yvals: self.yvals[best] = []
self.yvals[best].append(inY[i])
if best not in self.ivals: self.ivals[best] = []
self.ivals[best].append(i)
def get_vals(self, line):
"""
Get the predictions given a line search, where the line
is a vector of attributes per individual object fot the
10 closest cells.
:param float line: input data to look in the tree
:return: array with the cell content
"""
best, act = self.som_best_cell(line, return_vals=10)
for ib in range(10):
if best[ib] in self.yvals: return self.yvals[best[ib]]
return numpy.array([-1.])
def get_best(self, line):
"""
Get the predictions given a line search, where the line
is a vector of attributes per individual object for THE best cell
:param float line: input data to look in the tree
:return: array with the cell content
"""
best, act = self.som_best_cell(line, return_vals=10)
return best[0]
def save_map(self, itn=-1, fileout='SOM', path=''):
"""
Saves the map
:param int itn: Number of map to be included on path, use -1 to ignore this number
:param str fileout: Name of output file
:param str path: path for the output file
"""
if path == '':
path = os.getcwd() + '/'
if not os.path.exists(path): os.system('mkdir -p ' + path)
if itn >= 0:
ff = '_%04d' % itn
fileout += ff
numpy.save(path + fileout, self)
def save_map_dict(self, path='', fileout='SOM', itn=-1):
"""
Saves the map in dictionary format
:param int itn: Number of map to be included on path, use -1 to ignore this number
:param str fileout: Name of output file
:param str path: path for the output file
"""
SOM = {}
SOM['W'] = self.weights
SOM['yvals'] = self.yvals
SOM['ivals'] = self.ivals
SOM['topology'] = self.top
SOM['Ntop'] = self.Ntop
SOM['npix'] = self.npix
if path == '':
path = os.getcwd() + '/'
if not os.path.exists(path): os.system('mkdir -p ' + path)
if itn > 0:
ff = '_%04d' % itn
fileout += ff
numpy.save(path + fileout, SOM)
def plot_map(self, min_m=-100, max_m=-100, colbar='yes'):
"""
Plots the map after evaluating, the cells are colored with the mean value inside each
one of them
:param float min_m: Lower limit for coloring the cells, -100 uses min value
:param float max_m: Upper limit for coloring the cells, -100 uses max value
:param str colbar: Include a colorbar ('yes','no')
"""
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.cm as cm
from matplotlib import collections, transforms
from matplotlib.colors import colorConverter
if self.top == 'sphere': import healpy as H
if self.top == 'grid':
M = numpy.zeros(self.npix) - 20.
for i in range(self.npix):
if i in self.yvals:
M[i] = numpy.mean(self.yvals[i])
M2 = numpy.reshape(M, (self.Ntop, self.Ntop))
plt.figure(figsize=(8, 8), dpi=100)
if min_m == -100: min_m = M2[numpy.where(M2 > -10)].min()
if max_m == -100: max_m = M2.max()
SM2 = plt.imshow(M2, origin='center', interpolation='nearest', cmap=cm.jet, vmin=min_m, vmax=max_m)
SM2.cmap.set_under("grey")
if colbar == 'yes': plt.colorbar()
plt.axis('off')
if self.top == 'hex':
nx = self.Ntop
ny = self.Ntop
xL = numpy.arange(0, nx, 1.)
dy = 0.8660254
yL = numpy.arange(0, ny, dy)
ny = len(yL)
nx = len(xL)
npix = nx * ny
bX = numpy.zeros(nx * ny)
bY = numpy.zeros(nx * ny)
kk = 0
for jj in range(ny):
for ii in range(nx):
if jj % 2 == 0: off = 0.
if jj % 2 == 1: off = 0.5
bX[kk] = xL[ii] + off
bY[kk] = yL[jj]
kk += 1
xyo = list(zip(bX, bY))
sizes_2 = numpy.zeros(nx * ny) + ((8. * 0.78 / (self.Ntop + 0.5)) / 2. * 72.) ** 2 * 4. * numpy.pi / 3.
M = numpy.zeros(npix) - 20.
fcolors = [plt.cm.Spectral_r(x) for x in numpy.random.rand(nx * ny)]
for i in range(npix):
if i in self.yvals:
M[i] = numpy.mean(self.yvals[i])
if max_m == -100: max_m = M.max()
if min_m == -100: min_m = M[numpy.where(M > -10)].min()
M = M - min_m
M = M / (max_m - min_m)
for i in range(npix):
if M[i] <= 0:
fcolors[i] = plt.cm.Greys(.5)
else:
fcolors[i] = plt.cm.jet(M[i])
figy = ((8. * 0.78 / (self.Ntop + 0.5) / 2.) * (3. * ny + 1) / numpy.sqrt(3)) / 0.78
fig3 = plt.figure(figsize=(8, figy), dpi=100)
#fig3.subplots_adjust(left=0,right=1.,top=1.,bottom=0.)
a = fig3.add_subplot(1, 1, 1)
col = collections.RegularPolyCollection(6, sizes=sizes_2, offsets=xyo, transOffset=a.transData)
col.set_color(fcolors)
a.add_collection(col, autolim=True)
a.set_xlim(-0.5, nx)
a.set_ylim(-1, nx + 0.5)
plt.axis('off')
if colbar == 'yes':
figbar = plt.figure(figsize=(8, 1.), dpi=100)
ax1 = figbar.add_axes([0.05, 0.8, 0.9, 0.15])
cmap = cm.jet
norm = mpl.colors.Normalize(vmin=min_m, vmax=max_m)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cmap, norm=norm, orientation='horizontal')
cb1.set_label('')
if self.top == 'sphere':
M = numpy.zeros(self.npix) + H.UNSEEN
for i in range(self.npix):
if i in self.yvals:
M[i] = numpy.mean(self.yvals[i])
plt.figure(10, figsize=(8, 8), dpi=100)
if min_m == -100: min_m = M[numpy.where(M > -10)].min()
if max_m == -100: max_m = M.max()
if colbar == 'yes': H.mollview(M, fig=10, title="", min=min_m, max=max_m, cbar=True)
if colbar == 'no': H.mollview(M, fig=10, title="", min=min_m, max=max_m, cbar=False)
plt.show()