-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexp3.py
149 lines (101 loc) · 4.5 KB
/
exp3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import matplotlib.pyplot as plt
### EXP3 ALGORITHM ###
class EXP3(object):
def __init__(self, rew_avg, eta): ## Initialization
self.means = rew_avg # vector of true means of the arms
self.num_iter = num_iter # current time index t
self.num_arms = rew_avg.size # number of arms (k)
self.genie_arm = np.argmax(self.means) # best arm given the true mean rewards
self.chosen_arm = int
self.num_plays = np.zeros(rew_avg.size) # vector of number of times that arm k has been pulled
self.S = np.zeros(rew_avg.size) # vector of estimated reward by the end of time t
self.hindsight_rew = np.zeros(rew_avg.size)
self.probs_arr = np.ones(rew_avg.size) / rew_avg.size # sampling distribution vector P_t
self.cum_reg = [0] # cumulative regret
self.time = 0.0 # current time index
self.eta = eta # learning rate
self.restart()
return None
def restart(self): ## Reset self.time, num_plays, S, and cum_reg to zero; and set probs_arr to be uniform
self.time = 0.0
self.num_plays = np.zeros(self.num_arms)
self.S = np.zeros(self.num_arms)
self.hindsight_rew = np.zeros(rew_avg.size)
self.probs_arr = np.ones(self.num_arms) / self.num_arms
self.cum_reg = [0]
return None
def get_best_arm(self): ## For each time index, find the best arm according to EXP3
self.chosen_arm = np.random.choice(len(self.means), 1, p=self.probs_arr)
def update_exp3(self, arm, rew_vec): ## Compute probs_arr and update the total estimated reward for each arm
# Update prob distribution
self.probs_arr = np.exp(self.eta * self.S) / np.sum(np.exp(self.eta * self.S))
# Update total estimated reward
prob = self.probs_arr[arm]
reward = self.means[arm]
for i in range(self.num_arms):
if arm == i:
self.S[i] += 1 - ((1 - reward) / prob)
else:
self.S[i] += 1
# Track hindsight rewards
self.hindsight_rew += rew_vec[self.genie_arm]
return None
def update_reg(self, arm, rew_vec): ## Update the cumulative regret vector
# max reward in hindsight
hindsight_arm = np.argmax(self.hindsight_rew)
hindsight_max = rew_vec[hindsight_arm]
reg = hindsight_max - rew_vec[arm]
reg += self.cum_reg[-1]
self.cum_reg.append(reg)
return None
def iterate(self, rew_vec): ## Iterate the algorithm
self.time += 1.0
self.get_best_arm() # sample an arm based on latest distribution
self.update_exp3(self.chosen_arm, rew_vec)
self.update_reg(self.chosen_arm, rew_vec)
self.num_plays[self.chosen_arm] += 1
return None
### BANDIT ARM REWARD NOISE FUNCTION ###
def get_reward(rew_avg, var):
mean = np.zeros(rew_avg.size)
cov = var * np.eye(rew_avg.size)
epsilon = np.random.multivariate_normal(mean, cov)
reward = rew_avg + epsilon
return reward
### DRIVER ALGO ###
def run_algo(rew_avg, eta, num_iter, num_trial, var):
regret = np.zeros((num_trial, num_iter))
algo = EXP3(rew_avg, eta)
for k in range(num_trial):
algo.restart()
if (k + 1) % 10 == 0:
print('Instance number = ', k + 1)
for t in range(num_iter - 1):
rew_vec = get_reward(rew_avg, var)
algo.iterate(rew_vec)
regret[k, :] = np.asarray(algo.cum_reg)
return regret
if __name__ == '__main__':
### INITIALIZE EXPERIMENT PARAMETERS ###
rew_avg = np.asarray([0.8, 0.7, 0.5])
num_iter, num_trial = int(2e3), 1
eta = np.sqrt(np.log(rew_avg.size) / (num_iter * rew_avg.size))
var = 0.01
reg = run_algo(rew_avg, eta, num_iter, num_trial, var)
avg_reg = np.mean(reg, axis=0)
### PLOT RESULT ###
# Normal scale
plt.plot(avg_reg, label="EXP3")
plt.xlabel('time')
plt.ylabel('Cumulative Regret')
plt.title('Cumulative Regret with EXP3 - Average')
plt.legend()
plt.show()
# Log scale x-axis
plt.semilogx(avg_reg, label="EXP3")
plt.xlabel('time')
plt.ylabel('Cumulative Regret')
plt.title('Cumulative Regret with EXP3 - Average (semilogx)')
plt.legend()
plt.show()