-
Notifications
You must be signed in to change notification settings - Fork 1
/
conversion.tex
44 lines (30 loc) · 1.61 KB
/
conversion.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
\documentclass[12pt]{article}
\usepackage{amsmath,fullpage}
\usepackage[T1]{fontenc}
\begin{document}
Here, $ {}^* $ means natural units, as opposed to SI.
\begin{align}
\eta_{H_{2}O} & \approx 1.0 \times 10^{-3} Pa \cdot s = 1.0 \times 10^{-3} \frac{kg}{m \cdot s} \\
1 \text{ RESTLEN} & = 1 m^* = 1 \times 10^{-7} m \to \eta_{H_{2}O} \approx 10^{-10} \frac{kg}{m^*\cdot s}\\
\end{align}
Young's modulus of actin is approximately $ 10^9 Pa $, so
\begin{align}
1 Pa^* & = 10^9 Pa \to \eta_{H_{2}O} \approx 10^{-12} Pa^* \cdot s = 10^{-12} \frac{kg^*}{m^* \cdot {s^*}^2} \cdot s\\
\end{align}
Then, the ratio between both of these values for the viscosity of water should be 1, so
\begin{align}
1 & = \frac{\eta_{H_{2}O}}{\eta_{H_{2}O}} = \frac{10^{-12} \frac{kg^*}{m^* \cdot {s^*}^2} \cdot s}{10^{-10} \frac{kg}{m^*\cdot s}} = 10^{-2}
\frac{kg^*}{kg} \frac{s^2}{{s^*}^2} \\
\to \frac{kg^*}{kg} = 10^2 \frac{{s^*}^2}{s^2}
\end{align}
At this point, I can't think of a way to separate mass from time. My assumption: \textbf{for now, I am just letting} $ 1 kg^* = 1 kg $. Then,
\begin{align}
\frac{s^*}s & = 10 \sqrt{\frac{kg^*}{kg}} = 10 \\
\to \eta_{H_{2}O} &= 10^{-13} Pa^* \cdot s^*
\end{align}
Then, for an order of magnitude calculation, we see that the velocities due to Hookean forces is about
\begin{align}
\frac{10^{-3} \text{ forces are generally around this value}}{6 \pi ( 10^{-13} ) ( 10^{-1} )} & \sim 10^{10} \\
\end{align}
This implies that the time step needs to be less than $ 10^{-10} s^* $ by at least an order of magnitude, but I can't believe this is right, is it?
\end{document}