forked from mit-plv/koika
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPS.v
513 lines (463 loc) · 18.8 KB
/
CPS.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
(*! Language | Continuation-passing semantics and weakest precondition calculus !*)
Require Import CompactSemantics.
Require Import Magic.
Section CPS.
Context {pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t: Type}.
Context {reg_t_eq_dec: EqDec reg_t}.
Context {R: reg_t -> type}.
Context {Sigma: ext_fn_t -> ExternalSignature}.
Context {REnv: Env reg_t}.
Notation Log := (Log R REnv).
Notation rule := (rule pos_t var_t fn_name_t R Sigma).
Notation action := (action pos_t var_t fn_name_t R Sigma).
Notation scheduler := (scheduler pos_t rule_name_t).
Definition tcontext (sig: tsig var_t) :=
context (fun k_tau => type_denote (snd k_tau)) sig.
Definition acontext (sig argspec: tsig var_t) :=
context (fun k_tau => action sig (snd k_tau)) argspec.
Definition interp_continuation A sig R := option (Log * R * (tcontext sig)) -> A.
Definition action_continuation A sig tau := interp_continuation A sig (type_denote tau).
Definition rule_continuation A := option Log -> A.
Definition scheduler_continuation A := Log -> A.
Definition cycle_continuation A := REnv.(env_t) R -> A.
(* FIXME what's the right terminology for interpreter? *)
Definition action_interpreter A sig := forall (Gamma: tcontext sig) (action_log: Log), A.
Definition interpreter A := forall (log: Log), A.
(* Definition wp_bind (p: Log * tau * (tcontext sig) -> Prop) p' := *)
(* fun res => *)
(* match res with *)
(* | Some res => p res *)
(* | None => p None *)
(* end *)
(* FIXME monad *)
Section Action.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Section Args.
Context (interp_action_cps:
forall {sig: tsig var_t} {tau}
(a: action sig tau)
{A} (k: action_continuation A sig tau),
action_interpreter A sig).
Fixpoint interp_args'_cps
{sig: tsig var_t}
{argspec: tsig var_t}
(args: acontext sig argspec)
{A} (k: interp_continuation A sig (tcontext argspec))
: action_interpreter A sig :=
match args in context _ argspec return interp_continuation A sig (tcontext argspec) -> action_interpreter A sig with
| CtxEmpty => fun k Gamma l => k (Some (l, CtxEmpty, Gamma))
| @CtxCons _ _ argspec k_tau arg args =>
fun k =>
interp_args'_cps
args
(fun res =>
match res with
| Some (l, ctx, Gamma) =>
interp_action_cps _ _ arg _
(fun res =>
match res with
| Some (l, v, Gamma) => k (Some (l, CtxCons k_tau v ctx, Gamma))
| None => k None
end) Gamma l
| None => k None
end)
end k.
End Args.
Fixpoint interp_action_cps
{sig tau}
(L: Log)
(a: action sig tau)
{A} (k: action_continuation A sig tau)
: action_interpreter A sig :=
let cps {sig tau} a {A} k := @interp_action_cps sig tau L a A k in
match a in TypedSyntax.action _ _ _ _ _ ts tau return (action_continuation A ts tau -> action_interpreter A ts) with
| Fail tau => fun k Gamma l => k None
| Var m => fun k Gamma l => k (Some (l, cassoc m Gamma, Gamma))
| Const cst => fun k Gamma l => k (Some (l, cst, Gamma))
| Seq r1 r2 =>
fun k =>
cps r1 (fun res =>
match res with
| Some (l, v, Gamma) => cps r2 k Gamma l
| None => k None
end)
| Assign m ex =>
fun k =>
cps ex (fun res =>
match res with
| Some (l, v, Gamma) => k (Some (l, Ob, creplace m v Gamma))
| None => k None
end)
| Bind var ex body =>
fun k =>
cps ex (fun res =>
match res with
| Some (l, v, Gamma) =>
cps body (fun res =>
match res with
| Some (l, v, Gamma) =>
k (Some (l, v, ctl Gamma))
| None =>
k None
end) (CtxCons (var, _) v Gamma) l
| None => k None
end)
| If cond tbranch fbranch =>
fun k =>
cps cond (fun res =>
match res with
| Some (l, v, Gamma) =>
if Bits.single v then cps tbranch k Gamma l
else cps fbranch k Gamma l
| None => k None
end)
| Read P0 idx =>
fun k Gamma l =>
if may_read0 L idx then
k (Some (Environments.update
REnv l idx
(fun rl => {| lread0 := true; lread1 := rl.(lread1);
lwrite0 := rl.(lwrite0); lwrite1 := rl.(lwrite1) |}),
REnv.(getenv) r idx,
Gamma))
else k None
| Read P1 idx =>
fun k Gamma l =>
if may_read1 L idx then
k (Some (Environments.update
REnv l idx
(fun rl => {| lread0 := rl.(lread1); lread1 := true;
lwrite0 := rl.(lwrite0); lwrite1 := rl.(lwrite1) |}),
match (REnv.(getenv) l idx).(lwrite0), (REnv.(getenv) L idx).(lwrite0) with
| Some v, _ => v
| _, Some v => v
| _, _ => REnv.(getenv) r idx
end,
Gamma))
else k None
| Write P0 idx value =>
fun k =>
cps value (fun res =>
match res with
| Some (l, v, Gamma) =>
if may_write0 L l idx then
k (Some (Environments.update
REnv l idx
(fun rl => {| lread0 := rl.(lread1); lread1 := rl.(lread1);
lwrite0 := Some v; lwrite1 := rl.(lwrite1) |}),
Ob, Gamma))
else
k None
| None => k None
end)
| Write P1 idx value =>
fun k =>
cps value (fun res =>
match res with
| Some (l, v, Gamma) =>
if may_write1 L l idx then
k (Some (Environments.update
REnv l idx
(fun rl => {| lread0 := rl.(lread1); lread1 := rl.(lread1);
lwrite0 := rl.(lwrite0); lwrite1 := Some v |}),
Ob, Gamma))
else
k None
| None => k None
end)
| Unop fn arg1 =>
fun k =>
cps arg1 (fun res =>
match res with
| Some (l, v, Gamma) =>
k (Some (l, (PrimSpecs.sigma1 fn) v, Gamma))
| None => k None
end)
| Binop fn arg1 arg2 =>
fun k =>
cps arg1 (fun res =>
match res with
| Some (l, v1, Gamma) =>
cps arg2 (fun res =>
match res with
| Some (l, v2, Gamma) =>
k (Some (l, (PrimSpecs.sigma2 fn) v1 v2, Gamma))
| None => k None
end) Gamma l
| None => k None
end)
| ExternalCall fn arg =>
fun k =>
cps arg (fun res =>
match res with
| Some (l, v, Gamma) =>
k (Some (l, (sigma fn) v, Gamma))
| None => k None
end)
| InternalCall fn args body =>
fun k =>
interp_args'_cps (@cps) args
(fun res =>
match res with
| Some (l, argvals, Gamma) =>
cps body (fun res =>
match res with
| Some (l, v, _) =>
k (Some (l, v, Gamma))
| None => k None
end)
argvals l
| None => k None
end)
| APos pos a => fun k => cps a k
end k.
Definition interp_rule_cps (rl: rule) {A} (k: rule_continuation A) : interpreter A :=
fun L =>
interp_action_cps L rl (fun res =>
match res with
| Some (l, _, _) => k (Some l)
| None => k None
end) CtxEmpty log_empty.
End Action.
Section Scheduler.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Context (rules: rule_name_t -> rule).
Fixpoint interp_scheduler'_cps
(s: scheduler)
{A} (k: scheduler_continuation A)
{struct s} : interpreter A :=
let interp_try rl s1 s2 : interpreter A :=
fun L =>
interp_rule_cps r sigma (rules rl)
(fun res =>
match res with
| Some l => interp_scheduler'_cps s1 k (log_app l L)
| None => interp_scheduler'_cps s2 k L
end) L in
match s with
| Done => k
| Cons r s => interp_try r s s
| Try r s1 s2 => interp_try r s1 s2
| SPos _ s => interp_scheduler'_cps s k
end.
Definition interp_scheduler_cps
(s: scheduler)
{A} (k: scheduler_continuation A) : A :=
interp_scheduler'_cps s k log_empty.
End Scheduler.
Definition interp_cycle_cps (sigma: forall f, Sig_denote (Sigma f)) (rules: rule_name_t -> rule)
(s: scheduler) (r: REnv.(env_t) R)
{A} (k: _ -> A) :=
interp_scheduler_cps r sigma rules s (fun L => k (commit_update r L)).
Section WP.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Definition action_precondition := action_interpreter Prop.
Definition action_postcondition := action_continuation Prop.
Definition precondition := interpreter Prop.
Definition rule_postcondition := rule_continuation Prop.
Definition scheduler_postcondition := scheduler_continuation Prop.
Definition cycle_postcondition := cycle_continuation Prop.
Definition wp_action {sig tau} (L: Log) (a: action sig tau) (post: action_postcondition sig tau) : action_precondition sig :=
interp_action_cps r sigma L a post.
Definition wp_rule (rl: rule) (post: rule_postcondition) : precondition :=
interp_rule_cps r sigma rl post.
Definition wp_scheduler (rules: rule_name_t -> rule) (s: scheduler) (post: scheduler_postcondition) : Prop :=
interp_scheduler_cps r sigma rules s post.
Definition wp_cycle (rules: rule_name_t -> rule) (s: scheduler) r (post: cycle_postcondition) : Prop :=
interp_cycle_cps sigma rules s r post.
End WP.
Section Proofs.
Context (r: REnv.(env_t) R).
Context (sigma: forall f, Sig_denote (Sigma f)).
Section Args.
Context (IHa : forall (sig : tsig var_t) (tau : type) (L : Log) (a : action sig tau) (A : Type) (k : option (Log * tau * tcontext sig) -> A)
(Gamma : tcontext sig) (l : Log), interp_action_cps r sigma L a k Gamma l = k (interp_action r sigma Gamma L l a)).
Lemma interp_args'_cps_correct :
forall L {sig} {argspec} args Gamma l {A} (k: interp_continuation A sig (tcontext argspec)),
interp_args'_cps (fun sig tau a A k => interp_action_cps r sigma L a k) args k Gamma l =
k (interp_args r sigma Gamma L l args).
Proof.
induction args; cbn; intros.
- reflexivity.
- rewrite IHargs.
destruct (interp_args r sigma Gamma L l args) as [((?, ?), ?) | ]; cbn; try reflexivity.
rewrite IHa.
destruct (interp_action r sigma _ L _ _) as [((?, ?), ?) | ]; cbn; reflexivity.
Defined.
End Args.
Lemma interp_action_cps_correct:
forall {sig: tsig var_t}
{tau}
(L: Log)
(a: action sig tau)
{A} (k: _ -> A)
(Gamma: tcontext sig)
(l: Log),
interp_action_cps r sigma L a k Gamma l =
k (interp_action r sigma Gamma L l a).
Proof.
fix IHa 4; destruct a; cbn; intros.
all: repeat match goal with
| _ => progress simpl
| [ H: context[_ = _] |- _ ] => rewrite H
| [ |- context[interp_action] ] => destruct interp_action as [((?, ?), ?) | ]
| [ |- context[match ?x with _ => _ end] ] => destruct x
| _ => rewrite interp_args'_cps_correct
| _ => reflexivity || assumption
end.
Qed.
Lemma interp_action_cps_correct_rev:
forall {sig: tsig var_t}
{tau}
(L: Log)
(a: action sig tau)
(Gamma: tcontext sig)
(l: Log),
interp_action r sigma Gamma L l a =
interp_action_cps r sigma L a id Gamma l.
Proof.
intros; rewrite interp_action_cps_correct; reflexivity.
Qed.
Lemma interp_rule_cps_correct:
forall (L: Log)
(a: rule)
{A} (k: _ -> A),
interp_rule_cps r sigma a k L =
k (interp_rule r sigma L a).
Proof.
unfold interp_rule, interp_rule_cps; intros.
rewrite interp_action_cps_correct.
destruct interp_action as [((?, ?), ?) | ]; reflexivity.
Qed.
Lemma interp_rule_cps_correct_rev:
forall (L: Log)
(a: rule),
interp_rule r sigma L a =
interp_rule_cps r sigma a id L.
Proof.
intros; rewrite interp_rule_cps_correct; reflexivity.
Qed.
Lemma interp_scheduler'_cps_correct:
forall (rules: rule_name_t -> rule)
(s: scheduler)
(L: Log)
{A} (k: _ -> A),
interp_scheduler'_cps r sigma rules s k L =
k (interp_scheduler' r sigma rules L s).
Proof.
induction s; cbn; intros.
all: repeat match goal with
| _ => progress simpl
| _ => rewrite interp_rule_cps_correct
| [ H: context[_ = _] |- _ ] => rewrite H
| [ |- context[interp_rule] ] => destruct interp_action as [((?, ?), ?) | ]
| [ |- context[match ?x with _ => _ end] ] => destruct x
| _ => reflexivity
end.
Qed.
Lemma interp_scheduler_cps_correct:
forall (rules: rule_name_t -> rule)
(s: scheduler)
{A} (k: _ -> A),
interp_scheduler_cps r sigma rules s k =
k (interp_scheduler r sigma rules s).
Proof.
intros; apply interp_scheduler'_cps_correct.
Qed.
Lemma interp_cycle_cps_correct:
forall (rules: rule_name_t -> rule)
(s: scheduler)
{A} (k: _ -> A),
interp_cycle_cps sigma rules s r k =
k (interp_cycle sigma rules s r).
Proof.
unfold interp_cycle, interp_cycle_cps; intros; rewrite interp_scheduler_cps_correct.
reflexivity.
Qed.
Lemma interp_cycle_cps_correct_rev:
forall (rules: rule_name_t -> rule)
(s: scheduler),
interp_cycle sigma rules s r =
interp_cycle_cps sigma rules s r id.
Proof.
intros; rewrite interp_cycle_cps_correct; reflexivity.
Qed.
Section WP.
Lemma wp_action_correct:
forall {sig: tsig var_t}
{tau}
(Gamma: tcontext sig)
(L: Log)
(l: Log)
(a: action sig tau)
(post: action_postcondition sig tau),
wp_action r sigma L a post Gamma l <->
post (interp_action r sigma Gamma L l a).
Proof.
intros; unfold wp_action; rewrite interp_action_cps_correct; reflexivity.
Qed.
Lemma wp_rule_correct:
forall (L: Log)
(rl: rule)
(post: rule_postcondition),
wp_rule r sigma rl post L <->
post (interp_rule r sigma L rl).
Proof.
intros; unfold wp_rule; rewrite interp_rule_cps_correct; reflexivity.
Qed.
Lemma wp_scheduler_correct:
forall (rules: rule_name_t -> rule)
(s: scheduler)
(post: scheduler_postcondition),
wp_scheduler r sigma rules s post <->
post (interp_scheduler r sigma rules s).
Proof.
intros; unfold wp_scheduler; rewrite interp_scheduler_cps_correct; reflexivity.
Qed.
Lemma wp_cycle_correct:
forall (rules: rule_name_t -> rule)
(s: scheduler)
(post: cycle_postcondition),
wp_cycle sigma rules s r post <->
post (interp_cycle sigma rules s r).
Proof.
intros; unfold wp_cycle; rewrite interp_cycle_cps_correct; reflexivity.
Qed.
End WP.
End Proofs.
End CPS.
Arguments interp_action_cps
{pos_t var_t fn_name_t reg_t ext_fn_t}
{R Sigma} {REnv} r sigma
{sig tau} L !a / A k.
Arguments interp_rule_cps
{pos_t var_t fn_name_t reg_t ext_fn_t}
{R Sigma} {REnv} r sigma
!rl / {A} k.
Arguments interp_scheduler_cps
{pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t}
{R Sigma} {REnv} r sigma
rules !s / {A} k : assert.
Arguments interp_cycle_cps
{pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t}
{R Sigma} {REnv} sigma
rules !s r / {A} k : assert.
Arguments wp_action
{pos_t var_t fn_name_t reg_t ext_fn_t}
{R Sigma} {REnv} r sigma
{sig tau} L !a post / Gamma action_log : assert.
Arguments wp_rule
{pos_t var_t fn_name_t reg_t ext_fn_t}
{R Sigma} {REnv} r sigma
!rl / post.
Arguments wp_scheduler
{pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t}
{R Sigma} {REnv} r sigma
rules !s / post : assert.
Arguments wp_cycle
{pos_t var_t fn_name_t rule_name_t reg_t ext_fn_t}
{R Sigma} {REnv} sigma
rules !s r / post : assert.