forked from mit-plv/koika
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMember.v
248 lines (221 loc) · 7.61 KB
/
Member.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
(*! Utilities | Dependent type tracking membership into a list !*)
Require Import Koika.Common.
Inductive member {K: Type}: K -> list K -> Type :=
| MemberHd: forall k sig, member k (k :: sig)
| MemberTl: forall k k' sig, member k sig -> member k (k' :: sig).
(* https://github.com/coq/coq/issues/10749 *)
Definition eq_type {A} (a a': A) : Type :=
eq a a'.
Definition mdestruct {K sig} {k: K} (m: member k sig)
: match sig return member k sig -> Type with
| [] => fun m => False
| k' :: sig =>
fun m => ({ eqn: (eq_type k k') & m = eq_rect _ _ (fun _ => MemberHd k sig) _ eqn m } +
{ m': member k sig & m = MemberTl k k' sig m' })%type
end m.
destruct m; cbn.
- left; exists eq_refl; eauto.
- right; eauto.
Defined.
Lemma member_In {K} (sig: list K):
forall k, member k sig -> List.In k sig.
Proof.
induction 1; firstorder.
Qed.
Fixpoint member_idx {K sig} {k: K} (m: member k sig) : nat :=
match m with
| MemberHd k sig => 0
| MemberTl k k' sig m' => S (member_idx m')
end.
Lemma member_idx_nth {K sig} (k: K) (m: member k sig) :
List.nth_error sig (member_idx m) = Some k.
Proof.
induction m; firstorder.
Qed.
Lemma nth_member {T}:
forall (ls: list T) idx t,
List.nth_error ls idx = Some t ->
member t ls.
Proof.
induction ls; destruct idx; cbn; inversion 1; subst;
eauto using MemberHd, MemberTl.
Defined.
Lemma member_idx_inj {K sig} `{EqDec K} {k: K}
(m m': member k sig) :
member_idx m = member_idx m' ->
m = m'.
Proof.
induction m; cbn; intros * Hidx;
destruct (mdestruct m') as [(Hr & Heq) | (m'' & ->)]; cbn in *; subst; cbn in *;
try destruct Hr; try rewrite <- Eqdep_dec.eq_rect_eq_dec in * by apply eq_dec;
cbn in *; subst; cbn in *; inversion Hidx; subst.
- reflexivity.
- f_equal; eauto.
Qed.
Lemma member_idx_inj_contra {K sig} `{EqDec K} {k: K}
(m m': member k sig) :
m <> m' ->
member_idx m <> member_idx m'.
Proof.
intros ** Heq%member_idx_inj; congruence.
Qed.
Lemma member_idx_inj_k {K sig} {k k': K}
(m: member k sig) (m': member k' sig) :
member_idx m = member_idx m' ->
k = k'.
Proof.
intros * Heq;
eapply f_equal in Heq; erewrite !member_idx_nth in Heq;
congruence.
Qed.
Lemma member_idx_inj_k_contra {K sig} {k k': K}
(m: member k sig) (m': member k' sig) :
k <> k' -> member_idx m <> member_idx m'.
Proof.
intros ** Heq%member_idx_inj_k; congruence.
Qed.
Fixpoint member_map {K K'} (f: K -> K') {k: K} {ls: list K}
(m: member k ls) : member (f k) (List.map f ls) :=
match m in (member k ls) return (member (f k) (List.map f ls)) with
| MemberHd k sig =>
MemberHd (f k) (List.map f sig)
| MemberTl k k' sig m' =>
MemberTl (f k) (f k') (List.map f sig) (member_map f m')
end.
Lemma member_map_idx {K K'} (f: K -> K') (k: K) (ls: list K)
(m: member k ls) :
member_idx (member_map f m) = member_idx m.
Proof.
induction m; cbn; eauto.
Qed.
Fixpoint member_unmap {K K'} (f: K -> K') (k': K') (ls: list K)
(m: member k' (List.map f ls)) : { k: K & member k ls }.
destruct ls; cbn in *.
- destruct (mdestruct m).
- destruct (mdestruct m) as [(eqn & Heq) | (m' & Heq)]; cbn in *;
[ destruct eqn | destruct Heq ].
+ exact (existT _ k (MemberHd k ls)).
+ destruct (member_unmap _ _ f k' ls m') as [ k0 m0 ].
exact (existT _ k0 (MemberTl k0 k ls m0)).
Defined.
Lemma member_app_l {A} (a: A):
forall ls ls',
member a ls ->
member a (ls ++ ls').
Proof.
induction ls; cbn; intros ls' m.
- destruct (mdestruct m).
- destruct (mdestruct m) as [(-> & Heq) | (m' & Heq)];
subst; eauto using MemberHd, MemberTl.
Defined.
Lemma member_app_r {A} (a: A):
forall ls ls',
member a ls' ->
member a (ls ++ ls').
Proof.
induction ls; cbn; eauto using MemberTl.
Defined.
Lemma member_NoDup {K} {sig: list K} k:
EqDec K ->
NoDup sig ->
forall (m1 m2: member k sig),
m1 = m2.
Proof.
induction 2.
- intros; destruct (mdestruct m1).
- intros; destruct (mdestruct m1) as [(-> & ->) | (mem & ->)]; cbn.
+ intros; destruct (mdestruct m2) as [(? & ->) | (absurd & ->)]; cbn.
* rewrite <- Eqdep_dec.eq_rect_eq_dec by apply eq_dec.
reflexivity.
* exfalso; apply member_In in absurd; auto.
+ intros; destruct (mdestruct m2) as [(-> & ->) | (? & ->)]; cbn.
* exfalso; apply member_In in mem. auto.
* f_equal; apply IHNoDup.
Qed.
Fixpoint mem {K} `{EqDec K} (k: K) sig {struct sig} : member k sig + (member k sig -> False).
destruct sig.
- right; intro m; destruct (mdestruct m).
- destruct (eq_dec k k0) as [Heq | Hneq].
+ subst. left. apply MemberHd.
+ destruct (mem _ _ k sig) as [m | ].
* left. apply MemberTl. exact m.
* right. intros m.
destruct (mdestruct m) as [(eqn & Heq) | (m' & Heq)]; congruence.
Defined.
Fixpoint mem_opt {K} `{EqDec K} (k: K) sig {struct sig} : option (member k sig) :=
match sig with
| [] => None
| k' :: sig =>
match eq_dec k k' return option (member k (k' :: sig)) with
| left eqn => Some (rew <-[fun k => member k (k' :: sig)] eqn in MemberHd k' sig)
| right _ =>
match mem_opt k sig with
| Some m => Some (MemberTl k k' sig m)
| None => None
end
end
end.
Lemma mem_opt_correct {K} `{EqDec K} (k: K) (sig: list K) :
mem_opt k sig = match mem k sig with
| inl m => Some m
| inr _ => None
end.
Proof.
induction sig as [| k0 sig0 IHsig]; cbn.
- reflexivity.
- destruct (eq_dec k k0) as [Heq | Hneq].
+ destruct Heq; reflexivity.
+ rewrite IHsig; destruct mem; reflexivity.
Qed.
Fixpoint find {K} (fn: K -> bool) sig {struct sig} : option { k: K & member k sig }.
destruct sig.
- right.
- destruct (fn k) eqn:?.
+ left. eexists. apply MemberHd.
+ destruct (find _ fn sig) as [ (k' & m) | ].
* left. eexists. apply MemberTl. eassumption.
* right.
Defined.
Fixpoint assoc {K1 K2: Type} `{EqDec K1}
(k1: K1) sig {struct sig} : option { k2: K2 & member (k1, k2) sig }.
Proof.
destruct sig as [ | (k1' & k2) sig ].
- right.
- destruct (eq_dec k1 k1'); subst.
+ left. eexists. apply MemberHd.
+ destruct (assoc _ _ _ k1 sig) as [ (k2' & m) | ].
* left. eexists. apply MemberTl. eassumption.
* right.
Defined.
Fixpoint mmap {K V} (l: list K) (f: forall k: K, member k l -> V) {struct l} : list V :=
match l return ((forall k : K, member k l -> V) -> list V) with
| [] => fun _ => []
| k :: l => fun f => f k (MemberHd k l) :: mmap l (fun k' m => f k' (MemberTl k' k l m))
end f.
Fixpoint mprefix {K} (prefix: list K) {sig: list K} {k} (m: member k sig)
: member k (prefix ++ sig) :=
match prefix return member k sig -> member k (prefix ++ sig) with
| [] => fun m => m
| k' :: prefix => fun m => MemberTl k k' (prefix ++ sig) (mprefix prefix m)
end m.
Fixpoint minfix {K} (infix: list K) {sig sig': list K} {k} (m: member k (sig ++ sig'))
: member k (sig ++ infix ++ sig').
Proof.
destruct sig as [ | k' sig].
- exact (mprefix infix m).
- destruct (mdestruct m) as [(eqn & Heq) | (m' & Heq)];
[ destruct eqn | ]; cbn in *.
+ exact (MemberHd k (sig ++ infix ++ sig')).
+ exact (MemberTl k k' (sig ++ infix ++ sig') (minfix _ infix sig sig' k m')).
Defined.
Definition mprefix_pair {K sig} (k: K) (p: {k': K & member k' sig})
: {k': K & member k' (k :: sig)} :=
let '(existT _ k' m) := p in
existT _ k' (MemberTl k' k _ m).
Fixpoint all_members {K} (sig: list K): list { k: K & member k sig } :=
match sig with
| [] => []
| k :: sig => let ms := all_members sig in
let ms := List.map (mprefix_pair k) ms in
(existT _ k (MemberHd k sig)) :: ms
end.