-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImpParser.v
465 lines (402 loc) · 13.1 KB
/
ImpParser.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
(** * ImpParser: Lexing and Parsing in Coq *)
(** The development of the Imp language in [Imp.v] completely ignores
issues of concrete syntax -- how an ascii string that a programmer
might write gets translated into abstract syntax trees defined by
the datatypes [aexp], [bexp], and [com]. In this chapter, we
illustrate how the rest of the story can be filled in by building
a simple lexical analyzer and parser using Coq's functional
programming facilities. *)
(** It is not important to understand all the details here (and
accordingly, the explanations are fairly terse and there are no
exercises). The main point is simply to demonstrate that it can
be done. You are invited to look through the code -- most of it
is not very complicated, though the parser relies on some
"monadic" programming idioms that may require a little work to
make out -- but most readers will probably want to just skim down
to the Examples section at the very end to get the punchline. *)
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From Coq Require Import Strings.String.
From Coq Require Import Strings.Ascii.
From Coq Require Import Arith.Arith.
From Coq Require Import Init.Nat.
From Coq Require Import Arith.EqNat.
From Coq Require Import Lists.List. Import ListNotations.
From LF Require Import Maps Imp.
(* ################################################################# *)
(** * Internals *)
(* ================================================================= *)
(** ** Lexical Analysis *)
Definition isWhite (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (orb (n =? 32) (* space *)
(n =? 9)) (* tab *)
(orb (n =? 10) (* linefeed *)
(n =? 13)). (* Carriage return. *)
Notation "x '<=?' y" := (x <=? y)
(at level 70, no associativity) : nat_scope.
Definition isLowerAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (97 <=? n) (n <=? 122).
Definition isAlpha (c : ascii) : bool :=
let n := nat_of_ascii c in
orb (andb (65 <=? n) (n <=? 90))
(andb (97 <=? n) (n <=? 122)).
Definition isDigit (c : ascii) : bool :=
let n := nat_of_ascii c in
andb (48 <=? n) (n <=? 57).
Inductive chartype := white | alpha | digit | other.
Definition classifyChar (c : ascii) : chartype :=
if isWhite c then
white
else if isAlpha c then
alpha
else if isDigit c then
digit
else
other.
Fixpoint list_of_string (s : string) : list ascii :=
match s with
| EmptyString => []
| String c s => c :: (list_of_string s)
end.
Definition string_of_list (xs : list ascii) : string :=
fold_right String EmptyString xs.
Definition token := string.
Fixpoint tokenize_helper (cls : chartype) (acc xs : list ascii)
: list (list ascii) :=
let tk := match acc with [] => [] | _::_ => [rev acc] end in
match xs with
| [] => tk
| (x::xs') =>
match cls, classifyChar x, x with
| _, _, "(" =>
tk ++ ["("]::(tokenize_helper other [] xs')
| _, _, ")" =>
tk ++ [")"]::(tokenize_helper other [] xs')
| _, white, _ =>
tk ++ (tokenize_helper white [] xs')
| alpha,alpha,x =>
tokenize_helper alpha (x::acc) xs'
| digit,digit,x =>
tokenize_helper digit (x::acc) xs'
| other,other,x =>
tokenize_helper other (x::acc) xs'
| _,tp,x =>
tk ++ (tokenize_helper tp [x] xs')
end
end %char.
Definition tokenize (s : string) : list string :=
map string_of_list (tokenize_helper white [] (list_of_string s)).
Example tokenize_ex1 :
tokenize "abc12=3 223*(3+(a+c))" %string
= ["abc"; "12"; "="; "3"; "223";
"*"; "("; "3"; "+"; "(";
"a"; "+"; "c"; ")"; ")"]%string.
Proof. reflexivity. Qed.
(* ================================================================= *)
(** ** Parsing *)
(* ----------------------------------------------------------------- *)
(** *** Options With Errors *)
(** An [option] type with error messages: *)
Inductive optionE (X:Type) : Type :=
| SomeE (x : X)
| NoneE (s : string).
Arguments SomeE {X}.
Arguments NoneE {X}.
(** Some syntactic sugar to make writing nested match-expressions on
optionE more convenient. *)
Notation "' p <- e1 ;; e2"
:= (match e1 with
| SomeE p => e2
| NoneE err => NoneE err
end)
(right associativity, p pattern, at level 60, e1 at next level).
Notation "'TRY' e1 'OR' e2"
:= (
let result := e1 in
match result with
| SomeE _ => result
| NoneE _ => e2
end)
(right associativity,
at level 60, e1 at next level, e2 at next level).
(* ----------------------------------------------------------------- *)
(** *** Generic Combinators for Building Parsers *)
Open Scope string_scope.
Definition parser (T : Type) :=
list token -> optionE (T * list token).
Fixpoint many_helper {T} (p : parser T) acc steps xs :=
match steps, p xs with
| 0, _ =>
NoneE "Too many recursive calls"
| _, NoneE _ =>
SomeE ((rev acc), xs)
| S steps', SomeE (t, xs') =>
many_helper p (t :: acc) steps' xs'
end.
(** A (step-indexed) parser that expects zero or more [p]s: *)
Definition many {T} (p : parser T) (steps : nat) : parser (list T) :=
many_helper p [] steps.
(** A parser that expects a given token, followed by [p]: *)
Definition firstExpect {T} (t : token) (p : parser T)
: parser T :=
fun xs => match xs with
| x::xs' =>
if string_dec x t
then p xs'
else NoneE ("expected '" ++ t ++ "'.")
| [] =>
NoneE ("expected '" ++ t ++ "'.")
end.
(** A parser that expects a particular token: *)
Definition expect (t : token) : parser unit :=
firstExpect t (fun xs => SomeE (tt, xs)).
(* ----------------------------------------------------------------- *)
(** *** A Recursive-Descent Parser for Imp *)
(** Identifiers: *)
Definition parseIdentifier (xs : list token)
: optionE (string * list token) :=
match xs with
| [] => NoneE "Expected identifier"
| x::xs' =>
if forallb isLowerAlpha (list_of_string x) then
SomeE (x, xs')
else
NoneE ("Illegal identifier:'" ++ x ++ "'")
end.
(** Numbers: *)
Definition parseNumber (xs : list token)
: optionE (nat * list token) :=
match xs with
| [] => NoneE "Expected number"
| x::xs' =>
if forallb isDigit (list_of_string x) then
SomeE (fold_left
(fun n d =>
10 * n + (nat_of_ascii d -
nat_of_ascii "0"%char))
(list_of_string x)
0,
xs')
else
NoneE "Expected number"
end.
(** Parse arithmetic expressions *)
Fixpoint parsePrimaryExp (steps:nat)
(xs : list token)
: optionE (aexp * list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (i, rest) <- parseIdentifier xs ;;
SomeE (AId i, rest)
OR
TRY ' (n, rest) <- parseNumber xs ;;
SomeE (ANum n, rest)
OR
' (e, rest) <- firstExpect "(" (parseSumExp steps') xs ;;
' (u, rest') <- expect ")" rest ;;
SomeE (e,rest')
end
with parseProductExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parsePrimaryExp steps' xs ;;
' (es, rest') <- many (firstExpect "*" (parsePrimaryExp steps'))
steps' rest ;;
SomeE (fold_left AMult es e, rest')
end
with parseSumExp (steps:nat) (xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parseProductExp steps' xs ;;
' (es, rest') <-
many (fun xs =>
TRY ' (e,rest') <-
firstExpect "+"
(parseProductExp steps') xs ;;
SomeE ( (true, e), rest')
OR
' (e, rest') <-
firstExpect "-"
(parseProductExp steps') xs ;;
SomeE ( (false, e), rest'))
steps' rest ;;
SomeE (fold_left (fun e0 term =>
match term with
| (true, e) => APlus e0 e
| (false, e) => AMinus e0 e
end)
es e,
rest')
end.
Definition parseAExp := parseSumExp.
(** Parsing boolean expressions: *)
Fixpoint parseAtomicExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (u,rest) <- expect "true" xs ;;
SomeE (BTrue,rest)
OR
TRY ' (u,rest) <- expect "false" xs ;;
SomeE (BFalse,rest)
OR
TRY ' (e,rest) <- firstExpect "~"
(parseAtomicExp steps')
xs ;;
SomeE (BNot e, rest)
OR
TRY ' (e,rest) <- firstExpect "("
(parseConjunctionExp steps')
xs ;;
' (u,rest') <- expect ")" rest ;;
SomeE (e, rest')
OR
' (e, rest) <- parseProductExp steps' xs ;;
TRY ' (e', rest') <- firstExpect "="
(parseAExp steps') rest ;;
SomeE (BEq e e', rest')
OR
TRY ' (e', rest') <- firstExpect "<="
(parseAExp steps') rest ;;
SomeE (BLe e e', rest')
OR
NoneE "Expected '=' or '<=' after arithmetic expression"
end
with parseConjunctionExp (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (e, rest) <- parseAtomicExp steps' xs ;;
' (es, rest') <- many (firstExpect "&&"
(parseAtomicExp steps'))
steps' rest ;;
SomeE (fold_left BAnd es e, rest')
end.
Definition parseBExp := parseConjunctionExp.
Check parseConjunctionExp.
Definition testParsing {X : Type}
(p : nat ->
list token ->
optionE (X * list token))
(s : string) :=
let t := tokenize s in
p 100 t.
(*
Eval compute in
testParsing parseProductExp "x.y.(x.x).x".
Eval compute in
testParsing parseConjunctionExp "~(x=x&&x*x<=(x*x)*x)&&x=x".
*)
(** Parsing commands: *)
Fixpoint parseSimpleCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
TRY ' (u, rest) <- expect "skip" xs ;;
SomeE (<{skip}>, rest)
OR
TRY ' (e,rest) <-
firstExpect "if"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "then"
(parseSequencedCommand steps') rest ;;
' (c',rest'') <-
firstExpect "else"
(parseSequencedCommand steps') rest' ;;
' (tt,rest''') <-
expect "end" rest'' ;;
SomeE(<{if e then c else c' end}>, rest''')
OR
TRY ' (e,rest) <-
firstExpect "while"
(parseBExp steps') xs ;;
' (c,rest') <-
firstExpect "do"
(parseSequencedCommand steps') rest ;;
' (u,rest'') <-
expect "end" rest' ;;
SomeE(<{while e do c end}>, rest'')
OR
TRY ' (i, rest) <- parseIdentifier xs ;;
' (e, rest') <- firstExpect ":=" (parseAExp steps') rest ;;
SomeE (<{i := e}>, rest')
OR
NoneE "Expecting a command"
end
with parseSequencedCommand (steps:nat)
(xs : list token) :=
match steps with
| 0 => NoneE "Too many recursive calls"
| S steps' =>
' (c, rest) <- parseSimpleCommand steps' xs ;;
TRY ' (c', rest') <-
firstExpect ";"
(parseSequencedCommand steps') rest ;;
SomeE (<{c ; c'}>, rest')
OR
SomeE (c, rest)
end.
Definition bignumber := 1000.
Definition parse (str : string) : optionE com :=
let tokens := tokenize str in
match parseSequencedCommand bignumber tokens with
| SomeE (c, []) => SomeE c
| SomeE (_, t::_) => NoneE ("Trailing tokens remaining: " ++ t)
| NoneE err => NoneE err
end.
(* ################################################################# *)
(** * Examples *)
Example eg1 : parse "
if x = y + 1 + 2 - y * 6 + 3 then
x := x * 1;
y := 0
else
skip
end "
=
SomeE <{
if ("x" = ("y" + 1 + 2 - "y" * 6 + 3)) then
"x" := "x" * 1;
"y" := 0
else
skip
end }>.
Proof. cbv. reflexivity. Qed.
Example eg2 : parse "
skip;
z:=x*y*(x*x);
while x=x do
if (z <= z*z) && ~(x = 2) then
x := z;
y := z
else
skip
end;
skip
end;
x:=z "
=
SomeE <{
skip;
"z" := "x" * "y" * ("x" * "x");
while ("x" = "x") do
if ("z" <= "z" * "z") && ~("x" = 2) then
"x" := "z";
"y" := "z"
else
skip
end;
skip
end;
"x" := "z" }>.
Proof. cbv. reflexivity. Qed.
(* 2023-08-23 13:50 *)