PKCS #11: Cryptographic Token
Interface Standard

An RSA Laboratories Technical Note
Version 2.0 DRAFT 2

July 1, 1997Ap+-15:-1997

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065 USA
(415) 595-7703

(415) 595-4126 (fax)

E-Mail: rsa-labs@rsa.com

Copyright O 1994-7 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this
document is granted provided that it is identified as “RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)” in all material mentioning or referencing this document. RSA,
RC2, RC4, and RCS5 are registered trademarks and MD2 and MD5 are trademarks of RSA Data
Security, Inc. The RSA public-key cryptosystem is protected by U.S. Patent #4,405,829. CAST,
CAST3, and CASTS5 are trademarks of NertelEntrust Technologies. 0OS/2 is a registered
trademark and CDMF (Commercial Data Masking Facility) is a trademark of International
Business Machines Corporation. LYNKS is a registered trademark of SPYRUS Corporation.
IDEA is a trademark of Ascom Systec. Windows, Windows 3.1, and Windows 95 are trademarks
of Microsoft Corporation. Unix is a registered trademark of UNIX System Laboratories.
FORTEZZA is a registered trademark of the National Security Agency.

Page 111>+

Foreword

As public-key cryptography begins to see wide application and acceptance, one thing is
increasingly clear: If it is going to be as effective as the underlying technology allows it to be,
there must be interoperable standards. Even though vendors may agree on the basic public-key
techniques, compatibility between implementations is by no means guaranteed. Interoperability
requires strict adherence to an agreed-upon standard format for transferred data.
Towards that goal, RSA Laboratories has developed, in cooperation with representatives of
industry, academia and government, a family of standards called Public-Key Cryptography
Standards, or PKCS for short.
PKCS is offered by RSA Laboratories to developers of computer systems employing public-key
technology. It is RSA Laboratories' intention to improve and refine the standards in conjunction
with computer system developers, with the goal of producing standards that most if not all
developers adopt.
The role of RSA Laboratories in the standards-making process is four-fold:

1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or necessary changes
and extensions.

3. Publish revised standards when appropriate.

4. Provide implementation guides and/or reference implementations.
During the process of PKCS development, RSA Laboratories retains final authority on each
document, though input from reviewers is clearly influential. However, RSA Laboratories’ goal is
to accelerate the development of formal standards, not to compete with such work. Thus, when a
PKCS document is accepted as a base document for a formal standard, RSA Laboratories
relinquishes its “ownership” of the document, giving way to the open standards development
process. RSA Laboratories may continue to develop related documents, of course, under the
terms described above.
The PKCS family currently includes the following documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November 1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November 1993.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 1v214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.
PKCS #10: Certification Request Syntax Standard. Version 1.0, November 1993.
PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

PKCS documents are available by sending electronic mail to <pkcs@sa.com> or via
anonymous ftp to f t p. rsa. com in the pub/ pkcs directory. There is an electronic mailing list,
<pkcs-tng@ sa. com >, for discussion of issues relevant to the “next generation” of the PKCS
standards. To subscribe to this list, send e-mail to <maj or dono@ sa. com > with the line
“subscribe pkcs-tng ” in the message body. To unsubscribe, send e-mail to
<maj or domo@ sa. com > with the line “unsubscri be pkcs-tng ” inthe message body.

There is also an electronic mailing list, <crypt oki @ sa. com >, specifically for discussion of
PKCS #11. To subscribe to this list, send e-mail to <maj or dono@ sa. com > with the line
“subscribe cryptoki ” in the message body. To unsubscribe, send e-mail to
<maj or domo@ sa. com > with the line “unsubscri be cryptoki ” inthe message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to: PKCS Editor,
RSA Laboratories, 100 Marine Parkway, Suite 500, Redwood City, CA 94065; 415/595-7703; fax:
415/595-4126; E-mail: <pkcs-edi t or @sa. com >.

It would be difficult to enumerate all the people and organizations who helped to produce PKCS
#11. RSA Laboratories is grateful to each and every one of them. Especial thanks go to Bruno
Couillard of Chrysalis-ITS and John Centafont of NSA for the many hours they spent writing up
parts of this document.

For v1.0, PKCS #11’s document editor was Aram Pérez of International Computer Services, under

contract to RSA Laboratories; the project coordinator was Burt Kaliski of RSA Laboratories. For
v2.0, Ray Sidney served as document editor and project coordinator.

Copyright © 1994-7 RSA Laboratories

Page v

Table of Contents

LU SCOPE ..t e 1 b bR bR R R e Sh e £ bR R R Rt bRt s et ettt ben b s 11
2. REFERENGCES ...ttt ettt bbbtttk ebe b e bbbt ettt ettt e nbenens 22
S DEFINTTIONS ...t ettt bt bbbt sb bt s ettt abe s £abe e eb et et e b e nb et e st ebe st ebes £ebeneas 44
4. SYMBOLS AND ABBREVIATIONS ...ttt sttt sttt ssenee s 77
5. GENERAL OVERVIEW ...ttt et 1ttt ettt nbe e nnne 99
LT B =] (] N I 10 Y PSSR OPR S 99
5.2 GENERAL MODEL ..uttiittieitteeisitestes s teastse ettt e assessstaaasseeastsaasseestseeasaeessbeeaabeeasbeeasbeess b e e anbeeanbeeanbeeasbeeanteeanes 99
5.3 LOGICAL VIEW OF A TOKEN ...0iitiiiitvieitttesittessreestesassesssisaasssessssessssesssssassessssssssssssssssssssesssssessessssessnsens 1111
B U SERS .eiiitiiectte ettt ettt ettt ettt b et E et R b e Rt e e R b oo E e e e b e et e e e b e e e Ea e et b e e e ae e b e e taeeaee s 1212
T i [0] N USSP OPRN 1313
5.5.1 Read-0NIY SESSION STALESecveitriteieeieieses e s e se et e et e e e et tesresresreene e e e e e seesresrenneanes 1313
5.5.2 REAU/WIITE SESSION STALESccvieivieiiiiiitie et s ste e re e et e e e te e ba e beeaesneesrnesneesreennas 1414
5.5.3 Permitted 0bject aCCeSSES DY SESSIONSccveivvivirieieeieieerie ettt enes 1515
ORI Y (0] g IR V/=T) (SRS 1616
5.5.5 Session handles and 00Ject NANIEScoviiiiiecicce e 1747
5.5.6 Capabilities OF SESSIONSiiuiitiiiiiiieieie ettt ettt b e sb e b et et e b b besneeneas 1747
5.5.7 Public Cryptoki libraries and private Cryptoki liDrariescccccccevvviviiiivniviincieccse s 1747
5.5.8 EXample 0f USE OF SESSIONSeviitiiiieiieieites ettt bbbttt bbb sneeneas 1747
5.6 FUNCTION OVERVIEW ..iiutiiiitiieititesitee sttt e saeatee s taeatsasstaaessbeesstaassae s beeatseestaeebb e e s saeesbeessbeaenbeeentaaennnes 2020
6. SECURITY CONSIDERATIONS ..ottt it s ettt e 2424
T DATA TYPES .ot ettt bbbt bbbt n b ne Shebe st e b et et e bt e ettt n srne 2626
7.1 GENERAL INFORMATION L.0iiitttiititeiittestttesstesssesaissasssassssasssessssassssessssanssssssssssssssssssssssesssssnsesssessssees 2626
CRLUVERSION ..ttt etttk bbbkt s btk e bkt e bt ek e s b et et e st e e ebenbe e ebennes 2626
CK VERSION _PTR ..ottt ettt sttt ettt sb et sbe et sb e e ebesb et abesbe e abesbeaebesbeeetenns 2626
(01 [N =@ OSSP PSPPSRI 2626
(O8N 1N =@ i I - USSP PRSUSTPSSRPRN 2727
CK UNOTIFICATION .ottt etttk bbb et sttt et sbe e ebe st e ebesbe e ebe e 2727
7.2 SLOT AND TOKEN TYPES ...tttitiettiterietestestesestesee e st see bt st seese st ste st stestabesbe e ebesbe st ebeabesbesesbeseabesbe e ebesbenene 2828
LOF (1 I 1 L 1 0 OSSPSR PSSRSO 2828
CK_SLOT_ID_PTR ottt etttk bbbttt sb et bttt s bbb et e st et e nbe e ebe e 2828
CKUSLOT_INFO ..ottt st sttt et b e besb et et e e b e e et e st et e teabe e atesbe e atesbeearenns 2828
CK_SLOT_INFO _PTR ittt ettt st ettt bbbttt sbe et bt sbe e ene e 2929
CK_TOKEN_INFO ..ottt sttt sttt sbe et b et e st e e e tesbe e ate st e e abesbeeetenes 2929
CK_TOKEN_INFO_PTR ...ttt ettt bbb et sb et bbb et b et e 3232
7.3 SESSION TYPES w..tttesteteatestesestesteseeteseetesteseetesteseeseabesbeseebeseabeabe e ebeabe st e bt et e b e st e bes e ebenb et e besbe b ebeabe st enenbeneeee 3232
CK_SESSION_HANDLEcoitiiiiieiietse ettt ettt sbe st sttt et b e e besbe e ebesresantenns 3232
CK_SESSION_HANDLE_PTR ..ottt st sttt sttt sb et bt e 3232
CRLUSER_TYPE ..ottt ettt sttt sttt b e et sttt sttt e st et teab et e be st e e etesbeentennes 3333
(01 [T AN I =S USSP PSPPSRI 3333
CK_SESSION_INFO ...ociiiiiiciiiteiee sttt sttt sttt et b et sbe e abe st et e sb et etesbe e atesbeaeteabeentenns 3333
CK_SESSION_INFO _PTR ..ottt ettt bbb et sb et bt se et sbe e b e 3434
T4 OBIECT TYPES ..ottt ettt te ittt sttt b e et be st s ke s b st ket e bt e bt e bt b e e bt e b b e st e be st e b e e b et e b e be b et e st st en e st st es 3434
CK_OBIECT _HANDLEc.ooiitiictiteiee ettt ettt st et bt e st e ebesbe e atesbeaetesbeaetenns 3434
CK_OBIECT_HANDLE_PTR ..ottt ettt sttt sttt bbbt e 3434

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page vi2i4 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_UOBIECT _CLASS ..ottt etttk bbb ekt sb etk b ettt s bbb et s b et e sb e ebe e 3535
CK_OBIECT _CLASS PTR ..ottt sttt sttt st et sb et sttt st e te sttt sbe e abesbesaetesresanrennes 3535
CRLUKEY _TYPE ..ottt etttk bbbttt sb et b bbbtk n bt et e sb et e st e ebe e 3535
CK _CERTIFICATE _TYPE ...ttt sttt sttt sttt sttt sb et ettt sbe et st saatesbesantenns 3636
CK_ATTRIBUTE_TYPE ..ottt etttk sb ettt bbbt sbe et e 3636
CRATTRIBUTE ...ttt sttt sttt et b et sb et s bt et e st et e teeb et e be st e e ebesbe e ntenes 3737
CK_ATTRIBUTE_PTR .otttk b e et bbbttt et sbe et e 3738
LOF [AN I PSSRSO 3838
7.5 DATA TYPES FOR MECHANISMS ...iutiiiititeititesiteesiteesesssteeasseesstsassssesssaaesssestessnseesssasssssesssseesssessssssssens 3838
CK_MECHANISIM_TYPE ..ottt sttt bbb et bbbttt et b et e 3838
CK_MECHANISM_TYPE_PTR .ottt sttt sttt ettt st et st ste st sneneanes 4141
CKUMECHANISIM ...ttt bbbtk b e ekt b ettt s b ettt s b et sbe et e st e e ebe e 4141
CK_MECHANISIM _PTR .ottt sttt ettt sbe et b e besb et besbe e ebesbesaetesbeeatenns 4142
CK_MECHANISIM_INFO ..ottt ettt sttt et bbbt bbb et e 4142
CK_MECHANISM_INFO_PTR .ottt sttt sttt sttt st te st saatesbeeatesnesaesennes 4243
7.6 FUNGCTION TYPES ... uttiiitttetitesitte sttt e sttesbee s teeabee s baeats e e ssaeesbe e s s beeasbe e e s tee e s bb e e be e e bbeenbeennbeeanbeeenbeaantaeetees 4243
(01 (G =1V 11 USSP US PRSPPI 4343
(01 [= 3 VOSSPSR PRSPPI 4344
(01 (G N L@ I | OSSP PSPPSRI 4445
CR UFUNCTION _LIST oottt ettt sttt st ettt sbe et b be st e besae e atesbeaetesbeaetenns 4546
CK_FUNCTION_LIST_PTR ittt ettt sttt sb ettt sttt bbb et nnes 4647
CK_FUNCTION_LIST _PTR_PTR .ottt ettt sttt sttt ettt sbe et b aetesveanse e 4648
8. OBUIECTS .ottt ettt ettt b ekt b et b Rt E Rt R Rt R R ek et R e bRt bR bRt ene e re e renes 4749
8.1 COMMON ATTRIBUTES ..tiutttittteitreesittessteessteassesssissasssesssseesssessssessssssssssasssssssssssssessssessssssessssesssssssssees 4850
8.2 AT A OBIECTS 1. ttteitteeiitteitreesttee sttt e teeaabeeesbaeeasseessbeessb e e aseeaabee e be e e bee e e Ea e e nb b e e eR b e enb e e e beeanb e e e baeenbbeenraeenree s 4951
8.3 CERTIFICATE OBJECTS .tvtetutetrtestrtessueessueesseassessssssasssssssssesssessssessssssssssasssssssssssssesssseessessssesssssssssesssees 4951
8.3.1 X.509 CertifiCate ODJECTS ..iiviiiiiiiciei e 5052
B KEY OBIECTS ... ittt sttt sttt sttt b ettt b etk s b e bt e bt bt b e e b b e bt e bt e b e s b e st e b e b et et e bt e bt n bt n e b ne e 5153
8.5 PUBLIC KEY OBIECTS ..euttuteteiteiereatesteseatestetesteneatesteseesesteseesestestesesaestasesaessesessessesessessasesseseasessensasessensns 5355
8.5.1 RSA PUDIIC KBY OBJECES ...ttt bbbttt sb b 5355
8.5.2 DSA PUBIIC KEY ODJECTS ...vveieier ettt e e e sresreeneenes 5456
8.5.3 ECDSA PUDIIC KEY ODJECLSeviieiiiieiieiesie sttt ettt sttt bttt sbe b b eneas 5557
8.5.4 Diffie-Hellman public KeY 0DJECES ...vovveiiiii e 5557
8.5.5 KEA PUDIIC KEY ODJECLSviteitiitieiieiie ettt sttt bbbttt bbb 5658
8.5.6 MAYFLY PUDIIC KEY ODJECESvvvieiieic et s ene s 5759
8.6 PRIVATE KEY OBIECTStettiteierestestesestesteresteseetesteseesesteseesestestesessestatessessasessessesessessesessessasessensasessensns 5860
8.6.1 RSA Private KEY ODJECLSciueitiiiiiiieieierte ettt bbbt bt bbbt e et e bbb sneeneas 5861
8.6.2 DSA Private KBY ODJECESveveieiitieieiciese sttt e e e e nresreeneenes 6062
8.6.3 ECDSA Private KEY ODJECTSoviitiiiieiieieiies ettt bbb b b 6163
8.6.4 Diffie-Hellman private KeY ODJECEScvivviiiiiiie et enes 6264
8.6.5 KEA Private KEY ODJECTSeeiviiiiiiieieee ettt bbbttt bbb 6365
8.6.6 MAYFLY Private KEY ODJECEScuviveieieriisieseseseeieseeste e ste e e et e e sresre e enae e eeesaeseesresneeneas 6466
8.7 SECRET KEY OBJECTS ..uvtutettiteieseatesteseatestetesteseasesseseesesteseesessestesesaestasessessesessessesessessasessessasessensasessensns 6567
8.7.1 GENEIIC SECIEL KEY ODJECLSc.vitiitieiieiieie sttt sttt bbbt et et bbb eneas 6668
8.7.2 RC2 SECIEL KBY ODJECES ...vviieieiti sttt st ne e e e sresrenneenes 6669
8.7.3 RCA SECIEL KBY ODJECES ...ttt bbbttt be b b ne s 6770
8.7.4 RCB SECIEL KBY ODJECES ..vviiiie ettt ettt e e et eesresreaneenes 6770
8.7.5 DES SECIet KBY ODJECES ...ttt bbbttt bbb 6871
8.7.6 DES2 SECIet KEY ODJECTS ...ouveviieeiieeieeieiestes e e ettt et be st e s e e e e e eesresreaneanes 6972
8.7.7 DESS3 SECIEt KBY ODJECESviveitiitieiieiie ettt bbbttt bbb neene s 6972
8.7.8 CAST SECIEt KEY ODJECTS ...cuveveerireereeieiesies e s e s e s e e e e et e ste e e e e e et e tesbestesseenee e enseeesresreaneaneas 7073
8.7.9 CAST3 SECIEL KEY ODJECLScveeiitieieeiie ettt sttt b e bbbt et b sbe b sneeneas 7174
8.7.10 CASTDS SECIEt KBY ODJECES ..euveiriieieeeieiese ettt sresreaneenes 7174

Copyright © 1994-7 RSA Laboratories

Page Vviix

8.7.11 IDEA SECret KEY ODJECTS ...vvveierireerieieiisieseseseseesaesaeste e steste e esae e e sse e stesaesseenaeseenseseesresresneanes 7275
8.7.12 CDIMF SECIEL KBY ODJECESviiiiiiiiiiiie ettt bbb b b 7376
8.7.13 SKIPJACK SECIEL KEY ODJECLSvviveeeierieiisiesiesieseeiesee e e et e et e e et sre e ena e e e e e sresrenneenes 7376
8.7.14 BATON SECIEt KEY ODJECLSviviiieeiieieite ittt sttt sttt bbbt e bbb b sneeneas 1477
8.7.15 JUNIPER SECIet KBY ODJECES 1..vvvriiieeieieiis ettt sre e e enes 7578
9. FUNGCTIONS .ottt sttt ettt £ttt ettt s et s e bes £ bese b e be b e et et et e benenten 2 abne 7780
9.1 FUNCTION RETURN VALUES .. .cttitiriettitesterestestetateseetesteseesessestesessestesessesessessessasessessesessensesessessasessensns 7780
9.1.1 Universal Cryptoki function return VAIUEScoooiiiiiiiiiiiie e 7786
9.1.2 Cryptoki function return values for functions that use a session handlec..cccccecvviviviivinennn 7881
9.1.3 Cryptoki function return values for functions that use a tokenc.cocririiiiini e 7982
9.1.4 All the other Cryptoki function return ValUEScccocvieiiiiiieie s 7982
9.1.5 More on relative priorities of CryptoKi EITOFScc.ciiiiiiiiiiieeie e e 8487
9.2 CONVENTIONS FOR FUNCTIONS WHICH RETURN OUTPUT IN A VARIABLE -LENGTH BUFFER 8487
9.3 DISCLAIMER CONCERNING SAMPLE CODEvviiiviiititesiieessteesisesssesssissssssessssessssesssssessesssssssssssssnssssees 8588
9.4 GENERAL-PURPOSE FUNCTIONSttiittieiittesiteesteesstessiesasssssstsessssssssssesssssssesssssssssssasssssssssesssessssssssenas 8588
(O [T AT L2 SRS 8588
(O 1 g T 1L TSP 8588
O -1 oo OSSR 8689
(O T U o 4o]I PSSP 8689
9.5 SLOT AND TOKEN MANAGEMENT FUNCTIONS ...viiitiiiiiiaitieesireesireesiesassesssiesssssesssnessssessssssssesssssssssens 8790
O C1-1 6] (0]) SRS 8790
(O T A5 0] 1) (o PRSP 8992
(O 1=y 0] 1] {0 SRS 8992
C_GEtMECHANISIMLIST ...ttt et e et e e et e s te e be e be e beeteenresraesreesreennas 9093
(O C1cy Y Tot o VoL 0]) SR 9194
(O ¥ 1) 0 0] C=T o TP 9195
CINTEPIN Lottt b e et b ekt b ekt sb et b e eb et ekt e bt ekt s b et ebe s b et e b e b nnes 9396
O Y=L 1 2 | OSSPSR 9497
9.6 SESSION MANAGEMENT FUNCTIONS ...vtiitititieiitteesireesiseesseessessssessssessssssasssssssessssessssessnssssssssssensssses 9598
(O @ 1T 13Ty 1o o SRS 9598
O O (TR TT] o] o SRS 97100
O O [0S Y | T [0 o S 98101
O T AT (o] o] g (o SRS 98102
R CT- (@] o L-T - 1101] - L SR 99102
C_SELOPEIALIONSTALE ...ttt e bbbt e b sb e ke bt et e e e et e nbesbenbesaeebeens 100104
O o 1 ST 103106
(O 1o oo | T T T O U TP U TP UPRTOPRTOPT 104167
9.7 OBJECT MANAGEMENT FUNCTIONS ...uttiittieiteeetreasteeesisssssessssssssessssssasssssssssessssssessnsessssssssssssssnes 104108
(O O3 1T 1 (-1 o] 1Tt S 105108
(O 1010 /@ o] 1ot SRRSO U RS 106116
(O T 1 0]V o] -1 ST 108411
(O €= (O][I0t 1] 2 TS U RSP URURURPR 108112
C_GEtATIIIDULEVAIUE ...t sttt e e e e naesneereenes 109413
C_SEtATIIIDULEVAIUE ..ottt be e be e ee e re s reesreesteennas 111134
(O 110 (@ o] -1 6] g S 112415
(O 110 (00T £ RSO PP 112116
(O = 1T @ o] -0t 5] T - | 1133147
9.8 ENCRYPTION FUNCTIONStiutittititeseatesteeesestesessessesessesseseasessessssessesessessessasessessasessessessssessasessensanes 114118
(O = o Tot /o] 1) SRR PSP 114118
O = o Y o S 114118
(O = 1ot Y/ o1 L8 oo F- LTSS U PR 115119
(O = o Tot Y/ o | S 1163120
9.9 DECRYPTION FUNCTIONS ...ttutittititeseatesteeesestesestessesessessesessessessssessesessessessasessessasessessessssessasensensanes 118122

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page vi1214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

(O I3 ot/ o 1 1 ST 118122
(OB B =Tl oV o | AT TP RO PR OPPTOPRTOPT 118123
(O ot V7o L0 o - - ST 119124
C_DECIYPLFINGL ...ttt et b ettt e b b e bt bt b e et et et e b e nbesbeebeens 120124
9.10 MESSAGE DIGESTING FUNCTIONS ...eeiuvtiitiieittiesieesieessteesssesssseesssessssessssesssssssssessssssssessssssnsessssees 121126
O I3 T 11y o 1 ST 121126
(O B T -1 USROS P TR 122127
(O B T 1-1y (] o - S 123127
(O B T[Sy (G Y USSR P TSP 123128
(O T 115y {1 - 1S 124128
9.11 SIGNING AND MACING FUNCTIONS ...eevtiuiiereatirtesietentessetessesessessesessessessssessessssessessssessessssessensenes 125130
(OB TTo | o1 L1 USRS U SRRSO 125130
O T o P 126131
C_STGNUPUALE ...ttt bbbt a e bbbt bt e Rt e s et e sb e e ke s bt eb e e Reenbenbesbesbesbeebeenes 126131
(O To 1 T - 1T 127432
C_SIGNRECOVEITNIT ..ttt bbbt bt e b s b e be bt b e et e b e nbesbesbesbeebeanes 128133
(O To T ToT0 1Y ST 128134
9.12 FUNCTIONS FOR VERIFYING SIGNATURES AND IMACS.......coiiiiriiiiinieneiesieesie e 130435
OBV =1 2117/ a1 USROS U TP 130435
OV -1 1 Y/ 130435
C VERITYUPUALE ...ttt bbbt bt e b bt ke b et e e e e nbenbe b e sbesbeebeens 131136
ORIV =1 1Y/ T - | 132137
C_VEITYRECOVEITNIT ...ttt e b e bbbt ettt et e b b e nbe b sbeens 133138
LR o 1Y o0V ST 133138
9.13 DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONScotiiiriititininiesiesieseseesesseseesessessesessessessesessensans 134139
C_DIgeStENCIYPLUPTALE ..ottt ettt e bbbt see bbb sbeens 135146
(O Tot V7oL DT To T L0 oo LS 137142
C_SIGNENCIYPEUPTALE ...ttt bbbt bt ettt nbesbesbe bt ens 140145
(O Tot V7oL Y4 1A oo ST 142147
9.14 KEY MANAGEMENT FUNCTIONSctittieteiterieeateste et seetesteseesesseseesessesseseeseseesesseseesessessesessessensanes 144150
€ GBNEIALEKEY ...ttt ettt et bt bttt h e e bt e bt e bt e Rt e eh e eb b e ke ekt e ke e be e e e eae e eee e abeenns 145156
(O Tl ToT 1 (= 1) Y Y| S 146152
OB VLT 21011, T ST TP TP UPRTOPTOPT 147153
(O 1111 = o S 149155
(OB B 4 1T QYOS U TR 150156
9.15 RANDOM NUMBER GENERATION FUNCTIONS ...tiiiiiiiiieiiiesiireesinesssesssiessiessssaessssssssnssssnssssessssens 152158
(O TTa | E= [o 3 o S 152158
(O T oI =1 T2 &= o (o] o SRS 152159
9.16 PARALLEL FUNCTION MANAGEMENT FUNCTIONS ..eiuviiiiieiiieesieeesireesaesnessiessssssssssessssesssnesssens 153159
(O 1=y (U] o 1 10] 1S =L LS 153160
(O = o To(-1 | W] [0 o] o ST 154160
9.17 CALLBACK FUNCTIONS ...vtittieitteeistteateessteessaeessseesstasssssssssasassssessessssessssssssssssssssssssessssssssessnsessnsens 155162
9.17.1 Token iNSertion CallDACKScveiiieiesir e eneens 155162
9.17.2 Token removal CalIDACKSccvvoiiiiiiic e e s sre s 156162
9.17.3 Parallel function completion Callbacks.........c.ccerveieiiiiiiiiiicec s 156162
9.17.4 Serial function surrender CallDACKScooveiiiii i s 156162
10. MECHANISIMS ...t ettt ettt eb e bbbt e ettt ebe e abe e sbere e 157164
10.1 RSA MECHANISMSeiiiiiiititesiteesittesiteateessteeastseastseesssesssbeessee s beeaabeeestseeasseeasbeessbeestseasseeestseesnseeans 161168
10.1.1 PKCS #1 RSA Key Pair geNErationccceiverierierieriesirsesieeiessessessessesseseeseessessessesssssessessens 161168
10.1.2 PKCS #L RSA oottt ettt ettt b et s bbb et et s et e st et et e s e be b ne et e 161168
10.1.3 ISO/IEC 9796 RSA ..ottt sttt bbbttt bt s et e 162169
10.1.4 X509 (FAW) RSA ..ooeieieit ittt sttt ettt b s et et s et e e e s et et s et e e s e te st e re e 163170
10.1.5 PKCS #1 RSA signature with MD2, MD5, 0r SHA-Lcovoiieiii e 164174

Copyright © 1994-7 RSA Laboratories

Page x>+

10.2 DSA MECHANISIMS ...eiitiiititeiittesittesteesteessteeastseastaeesssessseeessbe s bseaasseestseessbeeasbeeasbeesteaassseestaeesnsenans 165172
10.2.1 DSA KeY PAIF GENEIALIONcvveeerieiesiesiisiesteseete e ste e ste e e esaesae e stesresresreesaeeesesaesresresneanens 165372
F0.2.2 DSA bt bk bkt e R e e b e bbbt Rt e Re et et e b nheebeaneeneas 165173
10.2.3 DSA WIth SHA-L .ottt bbb 166373
10.2.4 FORTEZZA tIMESTAMP ..e.viitiiiiiuieiesieite sttt sttt sie st s bbb st ese e e e eesbesbesbesneaneas 167174

10.3 ECDSA MECHANISMS ..uetititiiitteitttesittestttesteaastesastseasssessssaesssesssteassessssseesssesssseesssesssssassensssseessnssns 167174
10.3.1 ECDSA KeY Pair GENEIALION ...cvvevieieieiieiiesteseeie e ste et stese e e e e et sresre s e enaeseesesaesresrennaasens 167174
L0.3.2 ECDSA ottt bbb bk b bRt R e e bbbt b e Rt e Rt et et b b nbenneeneas 168175
10.3.3 ECDSA WIth SHA-L ..ottt b e 168175

10.4 DIFFIE-HELLMAN MECHANISMScvvitittitiaiiestenie sttt sreste s esse s sbesse s s esse s e e enesbesnesseeneeseennens 169176
10.4.1 PKCS #3 Diffie-Hellman Key pair generationccoccooieeieieniiieicneneeie e 169176
10.4.2 PKCS #3 Diffie-Hellman Key derivationcccocovieiiviiiniiieeie s 169176

10.5 KEA MECHANISM PARAMETERScvtitiittitiateatestestestestessesseaseessessessessessessessesssessensessessessesssesesssens 170377
CK_KEA _DERIVE_PARAIMS ..ottt bbbttt b bbbt 170377
CK_KEA_DERIVE_PARAMS PTR ..ottt 170378

10.6 KEA MECHANISMS ...ttt ettt sttt sttt ettt s e s es e st e ab ekt h e e e n e b abeabenbesbe et e e e ennenne s 171178
10.6.1 KEA KeY PaIT ENEIATION ...oiuiiiiiiieieiteite sttt sttt sttt b e bbb e eneas 171178
10.6.2 KEA KEY TeFIVALION ...c.viiveieicieeeieieie ettt ettt sttt sn st na e e e e srenrenneenes 171178

10.7 MAYFLY MECHANISM PARAMETERSeiutettetetestestesieasreteaseessessessessesseesesssessesnesnessesnessesssensesnens 172379
CK_MAYFLY_DERIVE_PARAMS ...ttt ettt b bbb 172179
CK_MAYFLY_DERIVE_PARAMS_PTR ..ottt 172379

10.8 MAYFLY MECHANISMScttetteititesteatesieestenee ettt st st ase e e st sbeab ekt sbeabe e e et e nbeabesseene b e e neennenneas 172186
10.8.1 MAYFLY Key Pail gBNEIatIONcc.oiuiiuiiiiitiiieieie sttt sttt ettt et e e bbb eneas 172186
10.8.2 MAYFLY KeY GErIVALIONcvveveeieiesieiiesie st ettt st st e e e sresrennaeneas 173186

10.9 GENERIC SECRET KEY MECHANISMScutitiatietitestestesieesesseaeesre st snesse e eesneseeseesnesiesnesseensennesnens 17318%
10.9.1 Generic SECret KeY GENEIALIONooiiiiiiiiiieie ettt ettt sb e 173181

10.10 WRAPPING/UNWRAPPING PRIVATE KEYS (RSA, DIFFIE-HELLMAN, AND DSA)ccccevenene 174181

O R I o e O o | = = USSP 175182

10.12 RC2 MECHANISM PARAMETERSutttititiittatteesiseesiseastesasessssessssssssssssssssssssssnsessnsessssssssssessssesnns 175183
CKLURCZ2_PARAMS .t r bbbt b e sr bbbt e e n b b sne b 175183
CK_RC2_PARAMS PTR ..ottt ettt s b et b e bttt sb e bbb ens 175183
CK_RC2_CBC_PARAIMS ...ttt bbbt bbb e nn bbb 176183
CK_RC2_CBC _PARAIMS _PTR .ttt bbbt e bbb 176183
CK_RC2_MAC_GENERAL_PARAMS ...t 176183
CK_RC2_MAC_GENERAL_PARAMS PTR ..ottt 176184

10.13 RC2 MECHANISMS ..eeitvtetteesirtestreesiteesseesstsasssssassseesssesssseesssesstssasssssssssesssessssessssesssssasssnssseesssessns 176184
10.13.1 RC2 KEY GENEIALIONevevievieieeeieieste e ste st e et et et te st e s e e e s et sresresneenee e eneeaesrenrenneeneas 176184
L0.13.2 RC2-ECB ...ttt bbbttt bbbt bt bt e b e e et e b sbeebesneeneas 177184
L0.13.3 RC2-CBC ...ttt bbbt e bbbt b bt e e e e b b nn e b b ene s 178185
10.13.4 RC2-CBC With PKCS PAAUINGveiviviiiiitieieeieiesie ettt s 178186
10.13.5 General-1ength RC2-IMACc.oiiiiece ettt sre e nnaenes 179187
10.13.6 RC2-IMAC ..ottt bbbt bt h b e b e bt s bt bt bt e b e et et e nbesbeebesneeneas 180187

10.14 RCA MECHANISMS ..eutttetieesittestrtessteesseeastsaassssassseesssesssseesssesstssasssssssssesssesssseesssesssssasssnesneesssessns 180488
10.14.1 RCA KEY GENEIALIONeveivreveeieeeieiestesiesteste e e ettt st st e e e e e b et saestesnaenae e eneenaesrenrenneeneas 180188
LO.LA.2 RCA ..ttt bbb bt ke b e b e R e e Rt e e e b e e bt h e bt Rt e R e e e et e b b ebenaeeneas 181188

10.15 THE RCDS CIPHER ...ttt ittt ettt a bttt et et e stb e e s te e sbe et e e be e e s bb e e s st e e anbeesnbe e ntbeenbeeentaeennbe e e 181188

10.16 RC5 MECHANISM PARAMETERSutttititiirteitttesiseestseastesasessssessssssesssssssssssssssnsessssesssssssssessssesnns 181189
CKLURCE_PARAMS .tk bbb bbbt bbb nn e sr b en s 181189
CK_RCE5_PARAMS PTR ..ottt ettt et sb et b ettt sb bbb ens 182189
CK_RCS5_CBC_PARAIMS ...ttt bbbt bbbt e e r b en s 182189
CK_RC5_CBC _PARAIMS _PTR ..ttt bbbttt bbbt 182196
CK_RC5_MAC_GENERAL_PARAMS ...t 182190
CK_RC5_MAC_GENERAL_PARAMS PTR ..ttt 183196

10.17 RCS MECHANISMS ..eeitvtetitesirtestteesiteesiessstsasasssastseesssesssseesssesssssasssssssssesssessssessssesssssasssnesneesssessns 183190

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page x214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

10.17.1 RC5 KEY GENEIALIONevevecveeieeeieie ettt st st sa et s resresneenee e e e e aesrenresnneneas 183190
O O 1 = USRS 183191
10.17.3 RCBE-CBC ...ttt sttt ettt bbbt bt b bbbt bbbt s bbbt et 184191
10.17.4 RC5-CBC With PKCS PAUUING .. .cvviviieiiiiiieisiesieese ettt 185492
10.17.5 General-1ength RCE-IMACc.ooiiiiie ettt sttt sresrennnenes 186193
10.17.6 RCE-MALC ...ttt ettt sttt bbbt s bbbt e bbb e b st et et n e te st ne et 186493
10.18 GENERAL BLOCK CIPHER MECHANISM PARAMETERScccuiiiivieiieesiiesieesisessssnssinsesssessssesssesans 187194
CK_MAC_GENERAL_PARAIMS ..ottt sttt 187194
CK_MAC_GENERAL_PARAMS _PTR ..ottt snns 187494
10.19 GENERAL BLOCK CIPHER MECHANISMSccititiiiiieiiriesieessteesinsassesssissesssesssseessessssssssssssneesssesans 187194
10.19.1 General block cipher Key generationccccevuereriviiesiesieerie e se e eneas 187194
10.19.2 General bIOck CIPNEr ECBcoiiiieie it s sbe e 188195
10.19.3 General bIock CIPREr CBCc.viiee et nneenes 189196
10.19.4 General block cipher CBC with PKCS paddingccccoeerieieiieiiie e 189196
10.19.5 General-length general block Cipher MAC ..o 190197
10.19.6 General bIock CIPhEr IMAC ..o e 190197
10.20 DOUBLE-LENGTH DES MECHANISMSuvtiiiiiiiieiiieiieeseessiveesissesineessessssassssesssssssssssssnesssnessn 191198
10.20.1 Double-length DES Key gENErationcccvevverierereieseseeieseestesieseesreseeeeseesseseesressessessens 191198
10.21 SKIPJACK MECHANISM PARAMETERSvtvitiiteteseatesteseateseetessestesessessesessessesessessssessensssessensesens 191198
CK_SKIPJACK_PRIVATE_WRAP_PARAMS ..ottt 191198
CK_SKIPJACK_PRIVATE_WRAP_PARAMS _PTR ...ccctiiiitiiiitriese e 192199
CK_SKIPJACK_RELAYX PARAMS ...ttt ettt sttt 192199
CK_SKIPJACK_RELAYX_PARAMS_PTR ..ottt 193200
10.22 SKIPJACK MECHANISMS ... cettiueieriatesieseatesteststesestesseseesessessesessesse st sseseesessessesessessesessessesessesessens 193201
10.22.1 SKIPJACK KEY ENEIALIONccuieiiiteite ittt sttt ettt sttt e bbb b b eneas 193204
10.22.2 SKIPJACK-ECBBAceiuiieiiiieieiiiteieiesie ettt ettt bbb b sne s 194201
10.22.3 SKIPJACK-=-CBECB4coiuiieiiiieieiiitesiete sttt sttt sttt s st st sesse s seabesaes s e bensensane s 194201
10.22.4 SKIPJACK-OFBB4ccutiiiiiieieiiiteieiesie ettt bbbttt bbb ane s 194202
10.22.5 SKIPJACK-CFBB4cvitiieiiiieieitsteie sttt ettt ettt s b s 195202
10.22.6 SKIPJACK-CFB32 ..ottt ettt bbb bbb 195202
10.22.7 SKIPJACK-CFBLEccviuiieiiiieieiisiesieie sttt sttt sbe s be st s s ssesaabesses s asesseneasees 195203
10.22.8 SKIPJACK-CFBSociitiiiiiiieietisieieie sttt ettt e b s 196203
10.22.9 SKIPJACK-WRAPootitiieiiiteiet sttt sttt et b st se s et s s e abe b s e be e ene s s 196204
10.22.10 SKIPJACK-PRIVATE-WRAP ..ottt ettt 196204
10.22.11 SKIPJACK-RELAY X ..otiiitiiieiieiiittiiee ettt sttt st asassessessabesaesassesseneasees 197204
10.23 BATON MECHANISMS ...uviiiiiteititesittesittesiteastesastseasasesssseesssesssteessesastseasssesssseesssessssessssesssseesssnsnes 197204
10.23.1 BATON KEY GBNEIALION ...vvcvveieeeieiesiesie e ste s ete et e e steste e sae e e e resre e enaeeesesaesresresnaanens 197204
10.23.2 BATON-ECBIL28coeiiiiieiiiieieieite ettt ettt b st s ane s 197205
10.23.3 BATON-ECBOG ...ccooiiiiiiiieiiiie ettt ettt sttt 197205
10.23.4 BATON-CBCIL28ociiiiieiiiieieiesteseee sttt s bbbt se et s e abe st s s abe s neane s 198205
10.23.5 BATON-COUNTER ...titiiiiieiieiisie ettt 198206
10.23.6 BATON-SHUFFLEcciiiitiiictie ettt ane e 198206
10.23.7 BATON WRAP ..ottt ettt ettt et et 199206
10.24 JUNIPER MECHANISMSeutittittiteseatesteeetestetesteseesesseseeseasessesestestesesseseasessessesessessesessessesessensasens 199207
10.24.1 JUNIPER KEY QENEIALIONccueiuieiiitiiieiie sttt sttt ettt bbb e e bbb sne s 199207
10.24.2 JUNIPER-ECBL28c.cciiiiiieieiiiie ettt 199207
10.24.3 JUNIPER-CBCL28ccociiieiiiiiiieiisiesiee sttt sttt s st be st abesaes s ebe s e ase s 200207
10.24.4 JUNIPER-COUNTERcoiiiiiiiiiitiieisieie sttt 200208
10.24.5 JUNIPER-SHUFFLEccovoiiiiiiiiiieise sttt 200208
10.24.6 JUNIPER WRAP ..ottt bbbttt sttt 201208
10.25 MD2 MECHANISMSeutitiiteteteatesteeetestesessestesesbeseesestesseseebesbesesbeseeseabeseeseebesbeeabesbebesbeneesesseneasens 201209
012200 AV, USRS 201209
10.25.2 General-1ength MD2-HIMACoooviiiiiiiiicie ettt e et snnanes 201209
10.25.3 IMID2-HMALC ...ttt ettt ettt s bt b et s ettt e b et s e te e ne b e 202209

Copyright © 1994-7 RSA Laboratories

Page Xix+

10.25.4 MD2 KeY UEIIVALIONeveiviciieecieieste sttt sttt st st e e s e e e e saesresreaneanes 202210
10.26 MID5 MECHANISMSoeuietiitiiereatesteeeiestetessestesesseseesesbesteseebesbesesbeseeseatesteseebesbeseebesbetesbeneesesteseesens 203210
02 00 AV L USRS 203210
10.26.2 General-1ength MD5-HMACcccoiiiiiiiiiciee et sre s e anes 203211
10.26.3 IMIDE-HMALC ...ttt ettt st s bbb et e b s e st et e s e e be st s e e be e ne b e 203211
10.26.4 IMD5 KeY GEIIVALIONeveeiciicecieie ettt st st ene e e e saesresreaneanes 204211
10.27 SHA-L MECHANISMSoititiieieeteste sttt sttt sttt beste e ebesbe et st ebeabeseebeebesbe e ebesbe st abeneebeabeneeneas 205212
L0.27.1 SHA L oottt ettt bbbt R et bRt bbbt n et b n et et re e 205212
10.27.2 General-1ength SHA-LT-HMACccviiiiiiieece ettt st anes 205213
10.27.3 SHA-L-HMALC ..ottt bbb st e bt s et e ne b e 205213
10.27.4 SHA-L KEY UEIIVALION ...veivicviiecieie ettt sttt st e e e saesrenresneeneas 205213
10.28 FASTHASH MECHANISMScvitiiitiitisieseatestesesteseetesseseesesseseeessestesesteseesesseseesessessesessessesessesessens 206214
10.28. 1 FASTHASH ..ottt ettt ettt b s be e b s 206214
10.29 PASSWORD-BASED ENCRYPTION MECHANISM PARAMETERSccviiivieiieeiiiesieesieesinessineessnesnes 207214
CKUPBE_PARAMS ...ttt bbb bbbttt bttt 207214
CK_PBE_PARAMS _PTR ..ottt ettt sttt bttt nesbe b ane et 207215
10.30 PASSWORD-BASED ENCRYPTION MECHANISMSccuviiiiiieitieeiiiesreesieeesseessineesssesssseesssesssnsssense 208215
10.30.1 MD2-PBE fOr DES-CBCccceiiiiitiiiiiirieieiesie ettt 208215
10.30.2 MID5-PBE fOr DES-CBCc.cciiiiiitiieiiiteisiesie ettt sttt sse et sne e 208215
10.30.3 MD5-PBE fOF CAST-CBC ...ttt ettt sttt 208216
10.30.4 MD5-PBE fOr CAST3-CBCoiiiiiiieiiiiiieesie ettt ane s 208216
10.30.5 MD5-PBE fOr CASTSE-CBCcviiiiiiiiiiiiieisie ettt 209216
10.31 SET MECHANISM PARAMETERS ... ccttittrieteitesiereatestesesteestestestesestestesessessesessesessessessasessensesessensesens 209216
CK_KEY_WRAP_SET_OAEP_PARAMS ..ottt 209216
CK_KEY_WRAP_SET_OAEP_PARAMS_PTR ..ottt 210217
10.32 SET MECHANISMS ...otiieiiititereetesteeeteseetessestetesbeseesessesbeseebeseebesbe st esesbeseeseebesbeseebeseebesbeneebeabeneeseas 210217
10.32.1 OAEP key Wrapping fOr SET ...t 210217
10.33 LYNKS MECHANISMS ...utiiiiitieititesite sttt e siieastesastseastseestseessaasssteasessstseesssesssseesssesssteesseessssessssneen 210218
10.33.1 LYNKS KBY WIAPPING ...veveeviereerieiesiestesiesteeeestesaessestessessesseessessessessesssssessesssesssssessessessessensens 210218
10.34 SSL MECHANISM PARAMETERS ... ccttiterieteatestereatestesesteestesteseesestestesessessesessesessessessssessensasessensesens 211218
CK_SSL3 RANDOM _DATA .ottt ettt ettt e te bt enesbe b ene et 211218
CK_SSL3 _MASTER_KEY_DERIVE_PARAMS ..ottt 211218
CK_SSL3 MASTER_KEY_DERIVE_PARAMS _PTR ...c.ccooiitiiiiiiiieie s 211219
CK_SSL3 KEY_MAT_OUT .ottt sttt sttt 212219
CK_SSL3 KEY_MAT_OUT _PTR .ottt bbb ssa e nne s 212220
CK_SSL3 KEY_MAT_PARAIMSoo ittt sttt 212220
CK_SSL3 KEY_MAT_PARAMS _PTR ..ottt ettt 213220
10.35 SSL MECHANISIMScuiviitiee sttt ettt e steestee st eaateeesteeesasesssbaessbe e beeabee e s tbeeasbeessbeeanbeenbsaesbeeestaeennnenn 213221
10.35.1 Pre_master KEeY gENEIAtIONcveiveriereitesieeeeie et seeste e e ettt na e e e e e nresrenneeneas 213221
10.35.2 MaASTEr KEY AEIIVALION .. .oviitiiieiiieie ettt bbb e b e eneas 214221
10.35.3 Key and MAC AEIrIVALIONcvcieiiiiieiie sttt st e e sresrenneeneas 214222
10.35.4 MD5 MACING IN SSL 3.0 1..cviiiiieiiitiieeseie sttt es et sne s 215223
10.35.5 SHA-1 MACING IN SSL 3.0 ..oviiiiiiiiieiieiese e 216223
10.36 PARAMETERS FOR MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMSccoviriiieiinieneas 216224
CK_KEY_DERIVATION_STRING _DATA ..ottt 216224
CK_KEY_DERIVATION_STRING_DATA_PTR ..ottt 217224
CK_EXTRACT _PARADMS ..ottt sttt bbbt te bt ne bt ene et 217224
CK_EXTRACT_PARAMS _PTR .ottt ettt sttt 217225
10.37 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMScciiiiiiiiirieiniinieneeieneeiesieseesesneseeneas 217225
10.37.1 Concatenation of a base key and another KBYcccoiiiiieiiiinc e 217225
10.37.2 Concatenation of @ base Key and dataccccerereriviiesiesieee e 218226
10.37.3 Concatenation of data and @ base KEYcceeieiiiiiiii e 219227
10.37.4 XORING 0f @ KeY N0 AALAcvevveieiiiecieciceee et s enes 220228
10.37.5 Extraction of one key from another KEYcco oo 221229

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page xi11214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

11. CRYPTOKI TIPS AND REMINDERSccootiiiiiieiiiis e e 223231
I Y151] TSP 223231
11.2 OBIECTS, ATTRIBUTES, AND TEMPLATES ... uttiiiieiiiesreesteesstessiesessesssineesssessssessssesssssssssssssneessessns 223231
11.3 SIGNING WITH RECOVERY ..iiitttiititeiitteitteestteeseeastseassseastsaesssesssseesssasssssasssssssssesssessssssssessssssssensns 224232
APPENDIX A, TOKEN PROFILES ..ottt sttt et 225233
APPENDIX B, COMPARISON OF CRYPTOKI AND OTHER APIS ..ot e 229237

List of Figures

FIGURE 5-1, GENERAL IMODEL ...c.utiiiiiiiititiitie ettt seestee e e tte e staeestae s astaabasssbaaasbaaesbaaesnbessnbaassensstneannseens 1016
FIGURE 5-2, OBJECT HIERARCHY ...iiiiiiiiitiiiie ettt steeste s teeate s taaestae s ssaaessbe s baaabae e taaeassassnbaesnbeentneenneee e 1111
FIGURE 5-3, READ-ONLY SESSION STATES ...eiiittiiititeitttesutesirtesiesassesssisessssessssessssessssssssessssssessssssessssesans 1414
FIGURE 5-4, READ/WRITE SESSION STATEScitteitieiteeiteesteeteasiesteesteesseesesssessesssssssssssesssssssssssssessssssenns 1515
FIGURE 8-1, CRYPTOKI OBJECT HIERARCHYviiiiiiiiitiieiiie ettt esiessiee s sieassiaessiaeessaessntaesbeesstnaasssesssnessnsesans 4749
FIGURE 8-2, KEY OBIECT DETAIL ..vititiiitit ittt e st ste e e st a e aeestae s ssaaessbe s sbaaabaaestaaessseesnaaesnbaestneannnnenes 5153
List of Tables

T ABLE -1, Y IMBOLS ..ttettttiieeetet ettt ettt estaesstee e tae et e e s baeesbb e e as e aab e e e be e e be e e e Ea e e eab e e e s beenbe e e be e e bee e s tbeesnbeeanbaennneene 7t
TABLE 4-2, PREFIXES ..eeutttitttittt ettt ettt e staesstesasteaasseestaaessseaassessseessbeeasseestseeasseeasbeesbee s beeaneeestbeesnbeeasbaennbense 7t
TABLE 4-3, CHARACTER SET .uttiitttititiitteeitteesiaeetessstesasssastsassssesassaessessstssassssssseesssesssssssssesssssassensssseesssesnn 88
TABLE 5-1, READ-ONLY SESSION STATES ...tiiittiitteiieesireastesasteessesssssessessssssssessssessssessssssssessssessssesssns 1414
TABLE 5-2, READ/WRITE SESSION STATES.....cctteitieitietieiteeiresieeiteeiseaeesssesssesssesssessasssessssssssssesssesssesssesnns 1515
TABLE 5-3, ACCESS TO DIFFERENT TYPES OBJECTS BY DIFFERENT TYPES OF SESSIONSccovvvivieiveennnn 1616
TABLE 5-4, SESSION EVENTS. . .ttiiiiiitiitiieesitteestee bt e siteessatesbaestaaabeeesb e e ssaeeasbeeasbee s s baeanbeeesbeesnbeentbeeanreenrees 1616
TABLE 5-5, SUMMARY OF CRYPTOKI FUNCTIONSutiiiiiiiieiiieaieessieesaeesivsssteesbesssesssssesssesssnessnsesssnns 2020
TABLE 7-1, SLOT INFORMATION FLAGSttiiiiiiiiiieittesiteessie e sire e steesibaesaeesbaessba e baeessaeestaaessnessnteesnsesaneas 2929
TABLE 7-2, TOKEN INFORMATION FLAGS.....ciittiiiiiiiiesitiessiee sttt e sree s e stee st astaessbe s ssaeesnbesanteesbeesseesens 3131
TABLE 7-3, SESSION INFORMATION FLAGS .. .cuttiiiiiiiieiiite sttt site sttt et siaaesibe s snbeesbeeaeee s 3434
TABLE 7-4, MECHANISM INFORMATION FLAGSiciitiiiiieiiieiieessite st e steesiessteesbasssteessiesssseesssessnsessnnns 4243
TABLE 8-1, COMMON OBJECT ATTRIBUTES ..eutteittteittesiesasteessieessseesssssssesssssssssessssssssssssnessssessssessnsessnns 4850
TABLE 8-2, DATA OBIECT ATTRIBUTES ...iiittiiitie sttt steesstsessseestbeessteesssaesssessstsssssessssessssesssssssnsesssssssnsesssnes 4951
TABLE 8-3, COMMON CERTIFICATE OBIECT ATTRIBUTES ...veoiviiiiieiireiieessiresiseesinesssessnessseesssnssssesssns 5052
TABLE 8-4, X.509 CERTIFICATE OBJECT ATTRIBUTESuvtiiitieiiieiieesitreestensireessesssnesssesssssssssessssesssesssnes 5052
TABLE 8-5, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLEScciiviiiiiiiiiieiiiesiinesieesineesnessnessseesens 5254
TABLE 8-6, COMMON KEY ATTRIBUTES ..ec.ttttitteitttesteesireasteessreessessssessssesssssssssesssssesssssssssesssessssssssessnes 5254
TABLE 8-7, COMMON PUBLIC KEY ATTRIBUTESciitttititiireeireasteessneesssesssnssssesssessssessssessssesssessssesssnns 5355
TABLE 8-8, RSA PUBLIC KEY OBJECT ATTRIBUTES ...vteitvteiiieiiieiieessiresaeesisesssessssssssesssssssssesssnesssesssnes 5355
TABLE 8-9, DSA PUBLIC KEY OBIECT ATTRIBUTESecitttitieitieiieessirsasseessnsessessssesssesssssssssesssnesssesssnes 5456
TABLE 8-10, ECDSA PUBLIC KEY OBIECT ATTRIBUTESuvtiiuieiiieiireesieessinessseessnesssesssesssseesssnsssnesssnes 5557
TABLE 8-11, DIFFIE-HELLMAN PUBLIC KEY OBIECT ATTRIBUTESvtiiiiieiiieiieesieessiee e e ssessneesvee s 5658
TABLE 8-12, KEA PUBLIC KEY OBIECT ATTRIBUTESuvtiitieitieiiiesitreasiessineesssessssesssesssssssssesssnesssesssnes 5658
TABLE 8-13, MAYFLY PUBLIC KEY OBJECT ATTRIBUTES ...cciviiiiieiiiesieessineesseessneesiesssessssesssssssssessens 5759
TABLE 8-14, COMMON PRIVATE KEY ATTRIBUTES .. .utiitttiitieiireiiteesiiresaeessseessessssessssesssssssssessnessssesssnes 5860
TABLE 8-15, RSA PRIVATE KEY OBJECT ATTRIBUTESvtiitiiiiieiiiessireesieesiressssessssesstesssssssssessssessssesssns 5961
TABLE 8-16, DSA PRIVATE KEY OBJECT ATTRIBUTES....utiiittiitieiieesitreesieesiseesssessssessssesssssssssessssessssesssnes 6062
TABLE 8-17, ECDSA PRIVATE KEY OBJECT ATTRIBUTES ...vtiiiviiiiieiiiesieessinessaeesineessesssessnseesssnesssessenas 6163
TABLE 8-18, DIFFIE-HELLMAN PRIVATE KEY OBIECT ATTRIBUTEScciiiiiiieiieesiresnieesineesneesneessee e 6264
TABLE 8-19, KEA PRIVATE KEY OBIECT ATTRIBUTES ...viiiittiitieiiieiitreasieessseesaessssssssesssssssssessssessssesssnes 6365
TABLE 8-20, MAYFLY PRIVATE KEY OBJECT ATTRIBUTES ..cvvtiitieiiieitiessiressteesineessessnessseesssnasnsesssnas 6466
TABLE 8-21, COMMON SECRET KEY ATTRIBUTESuvtiitiiiieeiiieesteessieesssesssnesssessstessssesssssssssesssnesssessnnes 6568

Copyright © 1994-7 RSA Laboratories

Page XX+

TABLE 8-22, GENERIC SECRET KEY OBIECT ATTRIBUTESvtiivieiiieiiieasiesssiressaeesineesiesssessssessssnssssesssns 6668
TABLE 8-23, RC2 SECRET KEY OBIECT ATTRIBUTES ..ecvvtiitteiiieiteesitreasieessressssessssesssesssssssssesssnesssesssnes 6669
TABLE 8-24, RC4 SECRET KEY OBIECT .uvtiittiiiiieiiieiiee sttt ssteesiteesteessbasstassstsasssaesssassnsassssessnsesssssssnsesssnes 6770
TABLE 8-25, RC4 SECRET KEY OBIECT .uvtiiitiiiiieiiieiieessirtesteesibeessteesstasstasstsasssaesssessnsessssessnsesssssssnsesssnes 6770
TABLE 8-26, DES SECRET KEY OBIECT ..viiittiiiiieiiteiiie sttt esteesive e sseesbassteesbsastaestbassntassnaessnteestnassesssnas 6871
TABLE 8-27, DES2 SECRET KEY OBIECT ATTRIBUTES .. uvtiitieitieiieesitreesieesireessseessnessnsesssssesnseesssessssesssns 6972
TABLE 8-28, DES3 SECRET KEY OBIECT ATTRIBUTESvtiiviiitieiieessireasieesiseesstesssnesstesssssssnsessssessssesssns 6972
TABLE 8-29, CAST SECRET KEY OBJECT ATTRIBUTES ...vteitteitieiiiesitreasiessssessseessnesssesssssssssessssessssesssnes 7073
TABLE 8-30, CAST3 SECRET KEY OBIECT ATTRIBUTES ...eiuttiiitieiiieiireasieeesieessseessnesssesssessnsesssssssssesssnes 7174
TABLE 8-31, CAST5 SECRET KEY OBIECT ATTRIBUTES ..1iiuttiiitieiiieiitreasieessieessaeessnesssesssessnsesssssssssesssnes 7174
TABLE 8-32, IDEA SECRET KEY OBIECT .iuttiiiiiiiitieiieesiessstee st siaeessbasssaessbaessaaestaeessaeestaaesssessssassnsesases 7275
TABLE 8-33, CDMF SECRET KEY OBIECT ..utiiiiiiiiieiiiesiesesies sttt steesitaestee s baasteesstessnaessnvassntessnsaasnseesens 7376
TABLE 8-34, SKIPJACK SECRET KEY OBJIECT ..iiitviiiiieiiieiieesitieesieesiieesaesssbasstaestasassaessnessnsesssnessnsesssnns 7376
TABLE 8-35, BATON SECRET KEY OBIECT .iiuttiiiieiiie ittt asiee s siiesiaeesittestessbasstae s taessaesssnessssessssessnsesssens 147F
TABLE 8-36, JUNIPER SECRET KEY OBIECT ...vtiiiiiiiieiitiesitee s itrestiee sttt e stessaaestae s bassstesssnessnsesssnaasnsessnens 7578
TABLE 10-1, MECHANISMS VS. FUNCTIONS ...uvtiiiiieitiieiiiiesieesieesieessisessssessisessssessssesssnssssssssssssssnesssnes 158165
TABLE 10-2, PKCS #1 RSA: KEY AND DATA LENGTH CONSTRAINTStvtiitiieireesiieesneesnessieesnsees 162169
TABLE 10-3, ISO/IEC 9796 RSA: KEY AND DATA LENGTH CONSTRAINTS ..cvcciviiiiiiecieesieesre e eens 163176
TABLE 10-4, X.509 (RAW) RSA: KEY AND DATA LENGTH CONSTRAINTS....cciiiriirierienieeieeiesieseeeas 164171
TABLE 10-5, PKCS #1 RSA SIGNATURES WITH MD2, MD5, OR SHA-1: KEY AND DATA LENGTH
L0701 ISy 12 1N £ PR OPRS 165172
TABLE 10-6, DSA: KEY AND DATA LENGTH CONSTRAINTSeoititiiivieritesreesiveesieessseessinessssesssnesssnes 166173
TABLE 10-7, DSA wiTH SHA-1: KEY AND DATA LENGTH CONSTRAINTS ...vvviiivieiiiieineesireesvesnnens 166173
TABLE 10-8, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH CONSTRAINTSvvvviiviiireeriveeienns 167474
TABLE 10-9, ECDSA: KEY AND DATA LENGTH CONSTRAINTS ..eiiitvieiiieeiieesireesneeseessieessseesssnesssnes 168175
TABLE 10-10, ECDSA WITH SHA-1: KEY AND DATA LENGTH CONSTRAINTS ...cociiriiiieeiireesineesenens 168176
TABLE 10-11, RC2-ECB: KEY AND DATA LENGTH CONSTRAINTS ..vicivieiiiieniieesireesineesnessseessiensssnes 177485
TABLE 10-12, RC2-CBC: KEY AND DATA LENGTH CONSTRAINTS ...ecitvtiiiiieriieesneesineeseessseessiessssnes 178186
TABLE 10-13, RC2-CBC wITH PKCS PADDING: KEY AND DATA LENGTH CONSTRAINTS.............. 179186
TABLE 10-14, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH CONSTRAINTS.......cccvennnen. 180487
TABLE 10-15, RC2-MAC: KEY AND DATA LENGTH CONSTRAINTS ..ccvviiiiieriieeiveesireesnessneessseesssnes 180487
TABLE 10-16, RC4 KEY AND DATA LENGTH CONSTRAINTS ©.viiititiiiiiesiieeineesireesnessseessinessssesssnesssnes 181188
TABLE 10-17, RC5-ECB: KEY AND DATA LENGTH CONSTRAINTS ..viiitvtiiiieeiiieesneesineesnessseessiessssnes 184191
TABLE 10-18, RC5-CBC: KEY AND DATA LENGTH CONSTRAINTS ...ecitvteiiviesiieesneesireesnessseessiensssees 185192
TABLE 10-19, RC5-CBC wITH PKCS PADDING: KEY AND DATA LENGTH CONSTRAINTS.............. 186493
TABLE 10-20, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH CONSTRAINTS.......cccvennnnn. 186493
TABLE 10-21, RC5-MAC: KEY AND DATA LENGTH CONSTRAINTS ..ccvvtiiiiieriieesineesireesnessneessieesnsnes 187194
TABLE 10-22, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH CONSTRAINTS.......cccvennnn. 189196
TABLE 10-23, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH CONSTRAINTSccocvvennnnnn 189196
TABLE 10-24, GENERAL BLOCK CIPHER CBC wiITH PKCS PADDING: KEY AND DATA LENGTH
CONSTRAINTS vttt ittteitteesiree sttt e ssbeaste e s beeabe e e stae e bb e e abaeesbe e e s beesabe e e te e e stb e e sbe e e bbeenbeennbeeenbeennbeeenteeesees 190197
TABLE 10-25, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH
L0701 ISy 12 1 N £ PR OPRR 190197
TABLE 10-26, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH CONSTRAINTS......cceennn. 191198
TABLE 10-27, SKIPJACK-ECB64: D ATA AND LENGTH CONSTRAINTScvtiiiieririesireesneesresnieesnsees 194201
TABLE 10-28, SKIPJACK-CBC64: D ATA AND LENGTH CONSTRAINTSvvviiiieeiiriesireesineesinessinesnnnes 194202
TABLE 10-29, SKIPJACK-OFB64: D ATA AND LENGTH CONSTRAINTSvvviiieiiireenineesineesinesiensnnees 195202
TABLE 10-30, SKIPJACK-CFB64: D ATA AND LENGTH CONSTRAINTS ...c.vvtiitieeiineesireesineesiresieesnsens 195202
TABLE 10-31, SKIPJACK-CFB32: D ATA AND LENGTH CONSTRAINTSvvtiitieeiiveesireesineesnesseeesnsees 195203
TABLE 10-32, SKIPJACK-CFB16: D ATA AND LENGTH CONSTRAINTSvvtiiiieeiiviesireesineesressseesnsens 196203
TABLE 10-33, SKIPJACK-CFB8: D ATA AND LENGTH CONSTRAINTS ...ceiitiiiitiieiineesireesineesieesnieesnnees 196204
TABLE 10-34, BATON-ECB128: D ATA AND LENGTH CONSTRAINTS ..eeiiivieiiieeiineesireesineesieessieesnsnes 197205

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page xiv2t4 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

TABLE 10-35, BATON-ECB96: D ATA AND LENGTH CONSTRAINTS ...vvtiiiiieiiieesireesireesinesieessieesssees 198205
TABLE 10-36, BATON-CBC128: D ATA AND LENGTH CONSTRAINTSecitvieitieeiiriesireesneesieessieesnsnes 198206
TABLE 10-37, BATON-COUNTER: D ATA AND LENGTH CONSTRAINTS ...ecitviiiiviesireesineesireesensnees 198206
TABLE 10-38, BATON-SHUFFLE: D ATA AND LENGTH CONSTRAINTS ..cceiiiiiiirieniieesineesireeiensnsnes 199206
TABLE 10-39, JUNIPER-ECB128: D ATA AND LENGTH CONSTRAINTSvviiiiieeiveesireesineesinessieesnnees 200207
TABLE 10-40, JUNIPER-CBC128: D ATA AND LENGTH CONSTRAINTSvvviitieeiiviesireesineesiresnieesnnees 200208
TABLE 10-41, JUNIPER-COUNTER: D ATA AND LENGTH CONSTRAINTSvvtiiivieririesineesireesvesiees 200208
TABLE 10-42, JUNIPER-SHUFFLE: D ATA AND LENGTH CONSTRAINTS ...ccoviiiiiieriiessineesireeseesnees 201208
TABLE 10-43, MD2: DATA LENGTH CONSTRAINTS ...eittieiieesiriesireesieesieessiessssssssinessssessssessssesssessnsens 201209
TABLE 10-44, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH CONSTRAINTS 202209
TABLE 10-45, MD5: DATA LENGTH CONSTRAINTS ...eitvieitieesivtesireesieeseessieeessssssinsssssessssessssesssessssens 203211
TABLE 10-46, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH CONSTRAINTS 203211
TABLE 10-47, SHA-1: DATA LENGTH CONSTRAINTS ..tvtiititeiiriesitesiieesreesieesssesssinessssesssnesssnessessssenss 205213
TABLE 10-48, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH CONSTRAINTS........... 205213
TABLE 10-49, FASTHASH: D ATA LENGTH CONSTRAINTS ...uvtiititiiiiiesiieesieesveesieesssesssinessssesssnesssnes 207214
TABLE 10-50, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH CONSTRAINTSccvvvvieiiiveninnnnn 216223
TABLE 10-51, SHA-1 MAC NG IN SSL 3.0: KEY AND DATA LENGTH CONSTRAINTS ...ccovvviiivennnnnn 216224

Copyright © 1994-7 RSA Laboratories

SCOPESCOPEMECHAMNISMS Page-1213 Page 1

1. Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to devices
which hold cryptographic information and perform cryptographic functions. Cryptoki,
pronounced “crypto-key” and short for “cryptographic token interface,” follows a simple object-
based approach, addressing the goals of technology independence (any kind of device) and
resource sharing (multiple applications accessing multiple devices), presenting to applications a
common, logical view of the device called a “cryptographic token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and functions
will be provided as a C header file by the supplier of a Cryptoki library. A separate document
provides a generic, language-independent Cryptoki interface. Additional documents will
provide bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The application
does not have to change to interface to a different type of device or to run in a different
environment; thus, the application is portable. How Cryptoki provides this isolation is beyond
the scope of this document, although some conventions for the support of multiple types of
device will be addressed here and in a separate document.

A number of cryptographic mechanisms (algorithms) are supported in this version; in addition,
new mechanisms can easily be added later without changing the general interface. It is possible
that additional mechanisms will be published from time to time in separate documents. It is also
possible for token vendors to define their own mechanisms (although, for the sake of
interoperability, registration through the PKCS process is preferable).

Cryptoki v2.0 is intended for cryptographic devices associated with a single user, so some
features that would be included in a general-purpose interface are omitted. For example,
Cryptoki v2.0 does not have a means of distinguishing multiple “users”. The focus is on a single
user’s keys and perhaps a small number of public-key certificates related to them. Moreover, the
emphasis is on cryptography. While the device may perform useful non-cryptographic functions,
such functions are left to other interfaces.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 2214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

2. References

ANSI C ANSI/ZISO. ANSI/ISO 9899-1990: American National Standard for Programming
Languages -- C. 1990.

ANSI X9.9 ANSI. American National Standard X9.9: Financial Institution Message
Authentication Code. 1982.

ANSI X9.17 ANSI. American National Standard X9.17: Financial Institution Key Management
(Wholesale). 1985.

ANSI X9.31 Accredited Standards Committee X9. Public Key Cryptography Using
Reversible Algorithms for the Financial Services Industry: Part 1. The RSA
Signature Algorithm. Working draft, March 7, 1993.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for the Financial
Services Industry: Management of Symmetric Algorithm Keys Using Diffie-
Hellman. Working draft, September 21, 1994.

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet Data System
Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46-2 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 46-2: Data Encryption Standard. December 30, 1993.

FIPS PUB 74 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April 1, 1981.

FIPS PUB 81 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 81: DES Modes of Operation. December 1980.

FIPS PUB 113 National Institute of Standards and Technology (formerly National Bureau of
Standards). FIPS PUB 113: Computer Data Authentication. May 30, 1985.

FIPS PUB 180-1 National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash
Standard. April 17, 1995.

FIPS PUB 186 National Institute of Standards and Technology. FIPS PUB 186: Digital
Signature Standard. May 19, 1994.

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic Interface
Programmers Guide, Revision 1.52. November, 1995.

GCS-API X/0pen Company Ltd. Generic Cryptographic Service APl (GCS-API), Base -
Draft 2. February 14, 1995.

ISO 7816-1 ISO. International Standard 7816-1: Identification Cards — Integrated Circuit(s)
with Contacts — Part 1: Physical Characteristics. 1987.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

REFERENCESREFERENCESMESHANISMS Page-3213 Page 3

ISO 7816-4

ISO/I1EC 9796

PCMCIA

PKCS #1

PKCS #3

PKCS #7

RFC 1319

RFC 1321

RFC 1421

RFC 1423

RFC 1508

RFC 1509

X.208

X.209

X.500

X.509

ISO. Identification Cards — Integrated Circuit(s) with Contacts — Part 4: Inter-
industry Commands for Interchange. Committee draft, 1993.

ISO/IEC. International Standard 9796: Digital Signature Scheme Giving Message
Recovery. July 1991.

Personal Computer Memory Card International Association. PC Card
Standard. Release 2.1, July 1993.

RSA Laboratories. RSA Encryption Standard. Version 1.5, November 1993.

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.

RSA Laboratories. Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA Laboratories,
April 1992.

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT Laboratory for
Computer Science and RSA Data Security, Inc., April 1992.

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures. 1AB IRTF PSRG, IETF PEM
WG, February 1993.

D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part
I11: Algorithms, Modes, and Identifiers. TIS and IAB IRTF PSRG, IETF PEM WG,
February 1993.

J. Linn. RFC 1508: Generic Security Services Application Programming Interface.
Geer Zolot Associates, September 1993.

J. Wray. RFC 1509: Generic Security Services API: C-bindings. Digital
Equipment Corporation, September 1993.

ITU-T (formerly CCITT). Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1). 1988.

ITU-T (formerly CCITT). Recommendation X.209: Specification of Basic Encoding
Rules for Abstract Syntax Notation One (ASN.1). 1988.

ITU-T (formerly CCITT). Recommendation X.500: The Directory—Overview of
Concepts and Services. 1988.

ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Authentication Framework. 1993. (Proposed extensions to X.509 are given in
ISO/IEC 9594-8 PDAM 1. Information Technology—Open Systems
Interconnection—The Directory: Authentication Framework—Amendment 1
Certificate Extensions. 1994.)

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 4214

3. Definitions

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

For the purposes of this standard, the following definitions apply:

API
Application
ASN.1
Attribute
BATON
BER

CAST

CAST3

CAST5

CBC

CDMF

Certificate

Cryptographic Device

Cryptoki

Cryptoki library

DES
DSA

ECB

Copyright © 1994-7 RSA Laboratories

Application programming interface.

Any computer program that calls the Cryptoki interface.
Abstract Syntax Notation One, as defined in X.208.

A characteristic of an object.

MISSI’s BATON block cipher.

Basic Encoding Rules, as defined in X.209.

Noertel'sEntrust Technologies’ proprietary symmetric block
cipher.

NertelsEntrust Technologies’ proprietary symmetric block
cipher.

Nortel's-proprietaryEntrust Technologies’ symmetric block
cipher.

Cipher Block Chaining mode, as defined in FIPS PUB 81.
Commercial Data Masking Facility, a block encipherment
method specified by International Business Machines
Corporation and based on DES.

A signed message binding a subject name and a public key.
A device storing cryptographic information and possibly
performing cryptographic functions. May be implemented
as a smart card, smart disk, PCMCIA card, or with some
other technology, such as software only, as a process on a
server.

The Cryptographic Token Interface defined in this standard.

A library that implements the functions specified in this
standard.

Data Encryption Standard, as defined in FIPS PUB 46-2.
Digital Signature Algorithm, as defined in FIPS PUB 186.

Electronic Codebook mode, as defined in FIPS PUB 81.

This is a DRAFT document.

DEFINITIONS DEFINITIONSMEESHANISMS Page-5213 Page 5

ECDSA
FASTHASH
IDEA
JUNIPER
KEA
LYNKS
MAC
MAYFLY

MD2

MD5

Mechanism
OAEP

Object

PIN
RSA

RC2

RC4

RC5

Reader

Session
SET

SHA-1

Slot

This is a DRAFT document.

Elliptic Curve DSA, as in IEEE P1363.

MISSI’s FASTHASH message-d igesting algorithm.
Ascom Systec’s symmetric block cipher.

MISSI’s JUNIPER block cipher.

MISSI’s Key Exchange Algorithm.

A smart card manufactured by SPYRUS.

Message Authentication Code, as defined in ANSI X9.9.
MISSI’s MAYFLY key agreement algorithm.

RSA Data Security, Inc.'s MD2 message-digest algorithm, as
defined in RFC 1319.

RSA Data Security, Inc.'s MD5 message-digest algorithm, as
defined in RFC 1321.

A process for implementing a cryptograp hic operation.
Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token; may be data, a certificate,
or a key.

Personal Identification Number.
The RSA public-key cryptosystem, as defined in PKCS #1.

RSA Data Security’s proprietary RC2 symmetric block
cipher.

RSA Data Security’s proprietary RC4 symmetric stream
cipher.

RSA Data Security’s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logical connection between an application and a token.
The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm, as defined in FIPS
PUB 180;-asamended-by-NIST-1.

A logical reader that potentially contains a token.

Copyright © 1994-7 RSA Laboratories

Page 6214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

SKIPJACK
SSL

Subject Name

SO

Token

User

MISSI’s SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a key is
assigned.

A Security Officer user.

The logical view of a cryptographic device defined by
Cryptoki.

The person using an application that interfaces to Cryptoki.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

SYMBOLS AND ABBREVIATIONSSYMBOLS AND ABBREVIAT IONSMESHANISMS——— Page 7213 Page 7

4. Symbols and abbreviations

The following symbols are used in this standard:

Table 44-11,Symbols

Symbol | Definition
N/A Not applicable
R/0 Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 44-22, Prefixes

Prefix Description
C_ Function
CK_ Data type

CKA_ Attribute

CKC_ Certificate type
CKF_ Bit flag

CKK_ Key type

CKM_ Mechanism type
CKN_ Notification

CKO_ Object class

CKS_ Session state

CKR_ Return value

CKU_ User type

h a handle

ul a CK_ULONG

p a pointer

pb a pointer to a CK_BYTE
ph a pointer to a handle

pul a pointer to a CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit val ue */
t ypedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK CHAR

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 8214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

/* a BYTE-sized Bool ean flag */
typedef CK BYTE CK BBOQ;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK_ULONG

/* a signed val ue, the same size as a CK ULONG */
typedef long int CK LONG

/* at least 32 bits; each bit is a Boolean flag */
typedef CK ULONG CK _FLAGS;

Cryptoki also uses pointers to these data types, which are implementation-dependent. These
pointers are:

CK BYTE PTR /* Pointer to a CK BYTE */

CK CHAR PTR /* Pointer to a CK CHAR */

CK UILONG PTR /* Pointer to a CK ULONG */

CK VODPTR /* Pointer to a void */

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to
another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes perhaps 64 bits). However,
these details should not affect an application, assuming it is compiled with a Cryptoki header file
consistent with the Cryptoki library to which the application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded by
“0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI C:

Table 44-33, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZa
bcdefghijklmnopgrstuvwxyz

Numbers 0123456789

Graphic characters | !“#% & ()*+,-./:;<=>?2[\]*_{]}~

Blank character L

In Cryptoki, a flag is a boolean flag that can be TRUE or FALSE. A zero value means the flag is
FALSE, and a non-zero value means the flag is TRUE. Cryptoki defines these macros, if needed:

#i f ndef FALSE

#defi ne FALSE O
#endi f

#i f ndef TRUE

#define TRUE (! FALSE)
#endi f

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS——————————— Page 0213 Page 9

5. General overview

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are ideal
tools for implementing public-key cryptography, as they provide a way to store the private-key
component of a public-key/private-key pair securely, under the control of a single user. With
such a device, a cryptographic application, rather than performing cryptographic operations
itself, programs the device to perform the operations, with sensitive information such as private
keys never being revealed. As more applications are developed for public-key cryptography, a
standard programming interface for these devices becomes increasingly valuable. This standard
addresses this need.

5.1 Design goals

Cryptoki was intended from the beginning to be an interface between applications and all kinds
of portable cryptographic devices, such as those based on smart cards, PCMCIA cards, and smart
diskettes. There are already standards (de facto or official) for interfacing to these devices at
some level. For instance, the mechanical characteristics and electrical connections are well-
defined, as are the methods for supplying commands and receiving results. (See, for example,
ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It would
not be enough simply to define command sets for each kind of device, as that would not solve the
general problem of an application interface independent of the device. To do so is still a long-term
goal, and would certainly contribute to interoperability. The primary goal of Cryptoki was a
lower-level programming interface that abstracts the details of the devices, and presents to the
application a common model of the cryptographic device, called a “cryptographic token” (or
simply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems become
more popular, a single device should be shared between more than one application. In addition,
an application should be able to interface to more than one device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or security
services, although one certainly could build such operations and services with the functions that
Cryptoki provides. Cryptoki is intended to complement, not compete with, such emerging and
evolving interfaces as “Generic Security Services Application Programming Interface” (RFC’s
1508 and 1509) and “Generic Cryptographic Service API” (GCS-API) from X/Open.

5.2 General model
Cryptoki's general model is illustrated in the following figure. The model begins with one or
more applications that need to perform certain cryptographic operations, and ends with a

cryptographic device, on which some or all of the operations are actually performed. A user may
be associated with an application.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 10214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Application 1 - - - Applicationn

==

Other Security Layers

y y
A A
Cryptoki
Slot 1 - - - - Slotn
1
A
Token 1 Tokenn
- Cryptographic Device 1 | Cryptographic Device n

Figure 55-11, General Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the system
through a number of “slots”. Each slot, which corresponds to a physical reader or other device
interface, may contain a token. A token is “present in the slot” (typically) when a cryptographic
device is present in the reader. Of course, since Cryptoki provides a logical view of slots and
tokens, there may be other physical interpretations. It is possible that multiple slots may share
the same physical reader. The point is that a system has some number of slots, and applications
can connect to tokens in any or all of those slots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for instance
PCMCIA card services or socket services. Cryptoki makes the cryptographic device look logically
like every other device, regardless of the implementation technology. Thus the application need
not interface directly to the device drivers (or even know which ones are involved); Cryptoki
hides these details. Indeed, the “device” may be implemented entirely in software (for instance,
as a process running on a server)-- no special hardware is necessary.

Cryptoki would likely be implemented as a library supporting the functions in the interface, and
applications would be linked to the library. An application may be linked to Cryptoki directly, or
Cryptoki could be a so-called “shared” library (or dynamic link library), in which case the
application would link the library dynamically. Shared libraries are fairly straightforward to
produce in operating systems such as Microsoft WindowsO, 0S/20, and can be achieved,
without too much difficulty, in UnixO and DOS systems.

The dynamic approach would certainly have advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if the library is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that intercepts
a user’s PIN. From a security perspective, therefore, direct linking is generally preferable.
However, whether the linking is direct or dynamic, the programming interface between the
application and a Cryptoki library remains the same.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS—————————— Page 11213 Page 11

The kinds of devices and capabilities supported will depend on the particular Cryptoki library.
This standard specifies only the interface to the library, not its features. In particular, not all
libraries will support all the mechanisms (algorithms) defined in this interface (since not all
tokens are expected to support all the mechanisms), and libraries will likely support only a subset
of all the kinds of cryptographic devices that are available. (The more kinds, the better, of course,
and it is anticipated that libraries will be developed supporting multiple kinds of token, rather
than just those from a single vendor.) It is expected that as applications are developed that
interface to Cryptoki, standard library and token “profiles” will emerge.

5.3 Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform cryptographic
functions. Cryptoki defines three classes of object: Data, Certificates, and Keys. A data object is
defined by an application. A certificate object stores a public-key certificate. A key object stores a
cryptographic key. The key may be a public key, a private key, or a secret key; each of these types
of keys has subtypes for use in specific mechanisms. This view is illustrated in the following
figure:

Object
Object Type
Data Key Certificate
Key Type
Public Key Private Key Secret Key

Figure 55-22, Object Hierarchy

Obijects are also classified according to their lifetime and visibility. “Token objects” are visible to
all applications connected to the token, and remain in the token even after the “sessions”
(connections between an application and the token) are closed and the token is removed from its
slot. “Session objects” are more temporary: whenever a session is closed by any means, all
session objects created by that session are automatically destroyed.

Further classification defines access requirements. “Public objects” are visible to all applications
that have a session with the token. “Private objects” are visible to an application only after a user

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 12214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

has been authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions with objects. A token may have an internal random number
generator. It is possible for the token to perform cryptographic operations in parallel with the
application, assuming the underlying device has its own processor.

It is important to distinguish between the logical view of a token and the actual implementation,
because not all cryptographic devices will have this concept of “objects,” or be able to perform
every kind of cryptographic function. Many devices will simply have fixed storage places for
keys of a fixed algorithm, and be able to do a limited set of operations. Cryptoki's role is to
translate this into the logical view, mapping attributes to fixed storage elements and so on. Not all
Cryptoki libraries and tokens need to support every object type. It is expected that standard
“profiles” will be developed, specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki, there are
general attributes, such as whether the object is private or public. There are also attributes
particular to a particular type of object, such as a modulus or exponent for RSA keys.

5.4 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer (SO).
The other type is the normal user. Only the normal user is allowed access to private objects on the
token, and that access is granted only after the normal user has been authenticated. Some tokens
may also require that a user be authenticated before any cryptographic function can be performed
on the token, whether or not it involves private objects. The role of the SO is to initialize a token
and to set the normal user’s PIN (or otherwise define how the normal user may be authenticated),
and possibly manipulate some public objects. The normal user cannot log in until the SO has set
the normal user’s PIN.

Other than the support for two types of user, Cryptoki does not address the relationship between
the SO and a community of users. In particular, the SO and the normal user may be the same
person or may be different, but such matters are outside the scope of this standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that they are
variable-length strings of characters from the set in Table 44-33Fable-4-3. Any translation to the
device’s requirements is left to the Cryptoki library. The following items are beyond the scope of
Cryptoki:

Any padding of PINs.

How the PINs are generated (by the user, by the application, or by some other means).
PINs that are entered via some means other than an application (e.g., via a PINpad on the token)

are even more abstract. Cryptoki knows how to wait for such a PIN to be entered and used to
gain authentication, and little more.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS—————————— Page 13213 Page 13

5.5 Sessions

Cryptoki requires that an application open one or more sessions with a token before the
application has access to the token’s objects and functions. A session provides a logical
connection between the application and the token. A session can be a read/write (R/W) session
or a read-only (R/0) session. Read/write and read-only refer to the access to token objects, not to
session objects. In both session types, an application can create, read, write and destroy session
objects, and read token objects. However, only in a read/write session can an application create,
modify, and destroy token objects.

All processes or threads of a given application have access to exactly the same sessions and the
same session objects. If several applications are running concurrently, it may or may not be the
case that they all have access to the same sessions and the same session objects; this is
implementation-dependent. Exactly what constitutes an “application” is also implementation-
dependent: in some environments, it might be appropriate to consider an application to be a
single process; in other environments, that might not be appropriate.

After a session is opened, the application has access to the token’s public objects. To gain access
to the token’s private objects, the normal user must log in and be authenticated.

When a session is closed, any session objects which were created in that session are destroyed.
This holds even for session objects which are “being used” by other sessions.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or more
sessions with one or more tokens. In general, a token may have multiple sessions with one or
more applications. A particular token may allow only one session, or only one read/write
session, at any given time, however.

An open session can be in one of several states. The session state determines allowable access to
objects and functions that can be performed on them. The session states are described in Section
5.5.15:5:1 and Section 5.5.25:5:2.

5.5.1 Read-only session states
A read-only session can be in one of two states, as illustrated in the following figure. When the
session is initially opened, it is in either the “R/0O Public Session” state (if there are no previously

open sessions that are logged in) or the “R/0 User Functions” state (if there is already an open
session that is logged in). Note that read-only SO sessions do not exist.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 14214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Device
R/O Public Removed

Session

Open Session
—_— P
Close Session

A

Log In User Log Out .
Device

Open Session Removed

A4

Close Session

R/O User
Functions

Figure 55-33, Read-Only Session States

The following table describes the session states:

Table 55-11, Read-Only Session States

State Description

R/0 Public Session The application has opened a read-only session. The application has
read-only access to public token objects and read/write access to public
session objects.

R/0 User Functions The normal user has been authenticated to the token. The application
has read-only access to all token objects (public or private) and
read/write access to all session objects (public or private).

5.5.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure. When the
session is opened, it is in either the “R/W Public Session” state (if there are no previously open
sessions that are logged in), the “R/W User Functions” state (if there is already an open session
that the normal user is logged into), or the “R/W SO Functions” state (if there is already an open
session that the SO is logged into).

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEW

R/W SO
Functions

<%
4, R, 250

c =] 28

- -0 (@] 0L Ve,
Open Session o) N
own 2 O, Yo,

- S 01//. 7

G

R/W Public
Session

Close Session/

Open Session :
P Remove Device

! N
5 o
c 3 > &
. — o o PR\
Open Session = o ' °
= 2
3 S &P K2
A\’ O
O

R/W User
Functions

Figure 55-44, Read/Write Session States

The following table describes the session states:

Table 55-22, Read/Write Session States

15213

State Description

R/W Public Session The application has opened a read/write session. The application has
read/write access to all public objects.

R/W SO Functions The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the token,
not to private objects. The SO can set the normal user’s PIN.

R/W User Functions | The normal user has been authenticated to the token. The application
has read/write access to all objects.

5.5.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type of object.
A given type of session has either read-only access, read/write access, or no access whatsoever to

a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User

Functions” session cannot create a token object.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 15

Page 16214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 55-33, Access to Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of object Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/0 R/W R/0 R/W R/W
Private token object R/0 R/W

5.5.4 Session events
Session events cause the session state to change. The following table describes the events:

Table 55-44, Session Events

Event Occurs when...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user.

Close Session the application closes the session or an application closes all sessions.
Device Removed the device underlying the token has been removed from its slot.

When the device is removed, all sessions are automatically logged out. Furthermore, all sessions
with the device are closed (this latter behavior is new for v2.0 of Cryptoki)—an application
cannot have a session with a token which is not present. In actuality, Cryptoki may not be
constantly monitoring whether or not the token is present, and so the token’s absence may not be
noticed until a Cryptoki function is executed. If the token is re-inserted into the slot before that,
Cryptoki may never know that it was missing.

Also new to Cryptoki v2.0 is the fact that all sessions that an application has with a token must
have the same login/logout status (i.e., for a given application and token, one of the following
holds: all sessions are public sessions; all sessions are SO sessions; or all sessions are user
sessions). When an application’s session logs in to a token, all of that application’s sessions with
that token become logged in, and when an application’s session logs out of a token, all of that
application’s sessions with that token become logged out. Similarly, for example, if an
application already has a R/O user session open with a token, and then opens a R/W session
with that token, the R/W session is automatically logged in.

This implies that a given application may not simultaneously have SO sessions and user sessions
open with a given token. It also implies that if an application has a R/W SO session with a token,
then it may not open a R/0O session with that token, since R/0 SO sessions do not exist. For the
same reason, if an application has a R/O session open, then it may not log any other session into
the token as the SO.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS—————————— Page 17213 Page 17

The above restrictions on the login/logout status of a single application’s sessions may also hold
for sessions opened by different application. For example, it may be impossible for one
application to have a R/O user session open with a token at the same time that another
application has a R/W SO session open with the same token. Whether or not this is the case is
implementation-dependent (see Section 5.5.75:5:# and Section 5.5.85:5-8 for more information).

5.5.5 Session handles and object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is akin to a file handle,
and is specified to functions to indicate which session the function should act on. However, a
session handle differs from a file handle in that all threads or processes of an application have
equal access to all session handles. That is, anything that can be accomplished with a given file
handle by one thread or process can also be accomplished with that file handle by any other
thread or process belonging to the same application.

Cryptoki also has object handles, which are identifiers used to manipulate objects. Object handles
are similar to session handles: all threads or processes of a given application have equal access to
objects through object handles. The only exception to this is that R/O sessions only have read-
only access to token objects, whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values.

5.5.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can perform;
administrative operations (such as logging in); object management operations (such as destroying
an object on the token); and cryptographic operations (such as computing a message digest). In
general, a single session can perform only one operation at a time. This is the reason that it may
be desirable for a single application to open multiple sessions with a single token. For efficiency’s
sake, however, a single session can perform the following pairs of operation types
simultaneously: message digesting and encryption; decryption and message digesting; signature
or MACing and encryption; and decryption and verifying signatures or MACs. Details on
performing simultaneous cryptographic operations in one session will be provided in Section
9.139:13.

5.5.7 Public Cryptoki libraries and private Cryptoki libraries

Cryptoki v2.0 implementations come in two essentially different varieties: “public Cryptoki
libraries”, in which all applications using a token have access to the same sessions and session
objects (this was the only type of Cryptoki library in the Cryptoki v1.0 document), and “private
Cryptoki libraries”, in which each application has its own private set of sessions and session
objects, which no other application can access.

5.5.8 Example of use of sessions
We give here a detailed and lengthy example of how applications can make use of sessions in a

private Cryptoki library. Afterwards, we indicate how things would differ if we were making
use of a public Cryptoki library, instead. We caution that our example is decidedly not meant to

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 18214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

indicate how multiple applications should use Cryptoki simultaneously; rather, it is meant to
clarify what uses of Cryptoki’s sessions and objects and handles are permissible. In other words,
instead of demonstrating good technique here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applications, A and B, are using a private Cryptoki library
to access a single token. Each application has two processes running: A has processes Al and A2,
and B has processes B1 and B2.

1.

10.

11.

12.

Al and Bl each initialize the Cryptoki library by calling C_Initialize (the specifics of
Cryptoki functions will be explained in Section 8.7.118-7-11). Note that exactly one call to
C_Initialize should be made for each application (as opposed to one call for every process,
for example).

Al opens a R/W session and receives the session handle 7 for the session. Since this is the
first session to be opened for A, it is a public session.

A2 opens a R/0 session and receives the session handle 4. Since all of A’s existing sessions
are public sessions, session 4 is also a public session.

Al attempts to log the SO in to session 7. The attempt fails, because if session 7 becomes an
SO session, then session 4 does, as well, and R/O SO sessions do not exist. Al receives an
error message indicating that the existence of a R/O session has blocked this attempt to log
in.

A2 logs the normal user in to session 7. This turns session 7 into a R/W user session, and
turns session 4 into a R/0O user session. Note that because Al and A2 belong to the same
application, they have equal access to all sessions, and therefore, A2 is able to perform this
action.

A2 opens a R/W session and receives the session handle 9. Since all of A’s existing sessions
are user sessions, session 9 is also a user session.

Al closes session 9.

B1 attempts to log out session 4. The attempt fails, because A and B have no access rights to
each other’s sessions or objects. B1 receives an error message which indicates that there is no
such session handle.

B2 attempts to close session 4. The attempt fails in precisely the same way as B1’s attempt to
log out session 4 failed.

Bl opens a R/W session and receives the session handle 7. Note that, as far as B is
concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s session 7 are
completely different sessions.

B1 logs the SO in to [B’s] session 7. This turns B’s session 7 into a R/W SO session, and has
no effect on either of A’s sessions.

B2 attempts to open a R/0 session. The attempt fails, since B already has an SO session
open, and R/0O SO sessions do not exist. B1 receives an error message indicating that the
existence of an SO session has blocked this attempt to open a R/O session.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS—————————— P3age 19213 Page 19

13. Al uses [A’s] session 7 to create a session object O1 of some sort and receives the object
handle 7. Note that a Cryptoki implementation may or may not support separate spaces of
handles for sessions and objects.

14. B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the object handle
7. As with session handles, different applications have no access rights to each other’s object
handles, and so B’s object handle 7 is entirely different from A’s object handle 7. Of course,
since B1 is an SO session, it cannot create private objects, and so O2 must be a public object (if
B1 attempted to create a private object, it would fail).

15. B2 uses [B’s] session 7 to perform some operation to modify the object associated with [B’s]
object handle 7. This modifies O2.

16. Al uses [A’s] session 4 to perform an object search operation to get a handle for O2. The
search returns object handle 1. Note that A’s object handle 1 and B’s object handle 7 now
point to the same object.

17. Al attempts to use [A’s] session 4 to modify the object associated with [A’s] object handle 1.
The attempt fails, because A’s session 4 is a R/O session, and is therefore incapable of
modifying O2, which is a token object. Al receives an error message indicating that the
session is a R/0O session.

18. Al uses [A’s] session 7 to modify the object associated with [A’s] object handle 1. This time,
since A’s session 7 is a R/W session, the attempt succeeds in modifying O2.

19. B1 uses [B’s] session 7 to perform an object search operation to find O1. Since Ol is a session
object belonging to A, however, the search does not succeed.

20. A2 uses [A’s] session 4 to perform some operation to modify the object associated with [A’s]
object handle 7. This operation modifies O1.

21. A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1. This
destroys O2.

22. B1 attempts to perform some operation with the object associated with [B’s] object handle 7.
The attempt fails, since there is no longer any such object. B1 receives an error message
indicating that its object handle is invalid.

23. Al logs out [A’s] session 4. This turns A’s session 4 into a R/0 public session, and turns A’s
session 7 into a R/W public session.

24. Al closes [A’s] session 7. This destroys the session object O1, which was created by A’s
session 7.

25. A2 attempt to use [A’s] session 4 to perform some operation with the object associated with
[A’s] object handle 7. The attempt fails, since there is no longer any such object.

26. A2 executes a call to C_CloseAllSessions. This closes [A’s] session 4. At this point, if A were
to open a new session, the session would not be logged in.

27. B2 closes [B’s] session 7. At this point, if B were to open a new session, the session would not
be logged in.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 20214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

28. A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

If A and B were using a public Cryptoki library, then all processes using the library would have
exactly the same access rights to sessions and objects. In other words, in a public library, there is
no distinction made between processes belonging to different applications. Anything that can be
done by one application’s processes with a given session handle can also be done by another
application’s processes. For example, with a public library, step 8 above would have succeeded.
Also, with a public library, step 10 could not return session handle 7, since session handle 7 was
already in use.

Furthermore, since public Cryptoki libraries have no notion of which application “owns” a
Cryptoki session, all sessions with a given token must have the same login/logout status.
Because of this, if one application logs out one of its sessions, all sessions of all applications are
logged out as well. It is therefore recommended that applications only make a C_Logout call
under exceptional circumstances. Instead, when an application finishes using a token, it should
close all “its” sessions (i.e., all the sessions that it was using) one at a time, and then call
C_Finalize. Similarly, if an application using a public Cryptoki library calls C_CloseAllSessions,
all session of all applications will be closed, and so an application should not normally execute
such a call.

Applications should in general not intentionally attempt to share sessions or session objects with

one another, even when they are using a public Cryptoki library (an application may not even
know what type of Cryptoki library it is using, of course).

5.6 Function overview

The Cryptoki API consists of a number of functions, spanning slot and token management and
object management, as well as cryptographic functions. These functions are presented in the
following table:

Table 55-55, Summary of Cryptoki Functions

Category Function Description
General C_Initialize initializes Cryptoki
purpose C_Finalize clean up miscellaneous Cryptoki-associated
functions resources
C_GetlInfo obtains general information about Cryptoki
C_GetFunctionList obtains entry points of Cryptoki library
functions
Slot and token C_GetSlotList obtains a list of slots in the system
management C_GetSlotInfo obtains information about a particular slot
functions C_GetTokenlInfo obtains information about a particular token
C_GetMechanismList obtains a list of mechanisms supported by a
token
C_GetMechanismInfo obtains information about a particular
mechanism
C_InitToken initializes a token
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS—————————— Page 71213

Category Function Description
Session C_OpenSession opens a connection between an application and a
management particular token or sets up an application
functions callback for token insertion
C_CloseSession closes a session
C_CloseAllSessions closes all sessions with a token
C_GetSessionlInfo obtains information about the session
C_GetOperationState obtains the cryptographic operations state of a
session
C_SetOperationState sets the cryptographic operations state of a
session
C_Login logs into a token
C_Logout logs out from a token
Object C_CreateObject creates an object
management C_CopyObiject creates a copy of an object
functions C_DestroyObiject destroys an object
C_GetObijectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObijectslInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption operation
C_EncryptFinal finishes a multiple-part encryption operation
Decryption C_Decryptinit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption operation
C_DecryptFinal finishes a multiple-part decryption operation
Message C_DigestlInit initializes a message-digesting operation
digesting C_Digest digests single-part data
C_DigestUpdate continues a multiple-part digesting operation
C_DigestKey digests a key
C_DigestFinal finishes a multiple-part digesting operation

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 21

Page 22214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Category Function Description

Signing C_Signlinit initializes a signature operation

and MACing C_Sign signs single-part data

functions C_SignUpdate continues a multiple-part signature operation
C_SignFinal finishes a multiple-part signature operation

C_SignRecoverlnit

initializes a signature operation, where the data
can be recovered from the signature

C_SignRecover

signs single-part data, where the data can be
recovered from the signature

Functions for
verifying
signatures
and MACs

C_Verifylnit initializes a verification operation

C_Verify verifies a signature on single-part data
C_VerifyUpdate continues a multiple-part verification operation
C_VerifyFinal finishes a multiple-part verification operation

C_VerifyRecoverlnit

initializes a verification operation where the data
is recovered from the signature

C_VerifyRecover

verifies a signature on single-part data, where
the data is recovered from the signature

Dual-purpose
cryptographic

C_DigestEncryptUpdate

continues simutaneous multi-part digesting and
encryption operations

functions C_DecryptDigestUpdate | continues simultaneous multi-part decryption
and digesting operations
C_SignEncryptUpdate continues simultaneous multi-part signature and
encryption operations
C_DecryptVerifyUpdate | continues simultaneous multi-part decryption
and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) a key
C_UnwrapKey unwraps (decrypts) a key
C_DeriveKey derives a key from a base key

generation
functions

Random number

C_SeedRandom

mixes in additional seed material to the random
number generator

C_GenerateRandom

generates random data

Parallel function

C_GetFunctionStatus

obtains updated status of a function running in

management parallel with the application

functions C_CancelFunction cancels a function running in parallel with the
application

Callback application-supplied function to process

function notifications from Cryptoki

Functions in the “Encryption functions”, “Decryption functions”, “Message digesting functions”,
“Signing and MACing functions”, “Functionsre for verifying signatures and MACs”, “Dual-
purpose cryptographic functions”, “Key management functions”, and “Random number
generation” categories may run in parallel with the application if the token has the capability and

Copyright © 1994-7 RSA Laboratories

This is a DRAFT document.

GENERAL OVERVIEWGENERAL OVERVIEWMEEHANISMS—————————— Page 73213 Page 23

the session is opened in this mode.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 24214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

6. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer or
communications system. Two of the particular features of the interface that facilitate such
security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions, requires a
PIN. Thus, possessing the cryptographic device that implements the token may not be
sufficient to use it; the PIN may also be needed.

2. Additional protection can be given to private keys and secret keys by marking them as
“sensitive” or “peunextractable”. Sensitive keys cannot be revealed in plaintext off the token,
and reunextractable keys cannot be revealed off the token even when encrypted (though they
can still be used as keys).

It is expected that access to private, sensitive, or aeunextractable object by means other than
Cryptoki (e.g., other programming interfaces, or reverse engineering of the device) would be
difficult.

If a device does not have a tamper-proof environment or protected memory in which to store
private and sensitive objects, the device may encrypt the objects with a master key which is
perhaps derived from the user’s PIN. The particular mechanism for protecting private objects is
left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the token
can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one component in a
system. While the token itself may be secure, one must also consider the security of the operating
system by which the application interfaces to it, especially since the PIN may be passed through
the operating system. This can make it easy for a rogue application on the operating system to
obtain the PIN; it is also possible that other devices monitoring communication lines to the
cryptographic device can obtain the PIN. Rogue applications and devices may also change the
commands sent to the cryptographic device to obtain services other than what the application
requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well play a
role here; for instance, a token may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,” since a
key that is sensitive will always remain sensitive. Similarly, a key that is unextractable cannot be
modified to be extractable. However, during key generation, if a private key or secret key is not
created as “sensitive” and “unextractable”, a copy of the private key could be obtained by a rogue
application before these attributes are set. It can therefore be important to generate keys in a
more trusted environment than the environment in which one performs normal operations.

An application may also want to be sure that the token is “legitimate” in some sense (for a variety
of reasons, including export restrictions). This is outside the scope of the present standard, but it
can be achieved by distributing the token with a built-in, certified public/private-key pair, by
which the token can prove its identity. The certificate would be signed by an authority

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

SECURITY CONSIDERATIONS SECURITY CONSIDERATIO NSMEEHANISMS————— Page 25213 Page 25

(presumably the one indicating that the token is “legitimate”) whose public key is known to the
application. The application would verify the certificate, and challenge the token to prove its
identity by signing a time-varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which

cryptographic operations the user may perform. The user may perform any operation supported
by the token.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 26214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

7. Data types

Cryptoki's data types are described in the following subsections, organized into categories, based
on the kind of information they represent. The data types for holding parameters for various
mechanisms, and the pointers to those parameters, are not described here; these types are
described with the information on the mechanisms themselves, in Section 1040.

7.1 General information

Cryptoki represents general information with the following types:

CK_VERSION

CK_VERSION is a structure that describes the version of a Cryptoki interface, a Cryptoki library,
an SSL implementation, or the hardware or firmware version of a slot or token. It is defined as
follows:
typedef struct CK VERSI ON {
CK _BYTE ngj or;
CK_BYTE ni nor;
} K VERSI O\

The fields of the structure have the following meanings:
major major version number (the integer portion of the version)

minor minor version number (the hundredths portion of the
version)

For version 1.0, major = 1 and minor = 0. For version 2.1, major = 2 and minor = 10. Minor
revisions of the Cryptoki standard are always upwardly compatible within the same major
version number.

CK_VERSION_PTR

CK_VERSION_PTR points to a CK_VERSION structure. It is implementation-dependent.

CK_INFO

CK_INFO provides general information about Cryptoki. It is defined as follows:

typedef struct CK INFO {
CK_VERSI ON crypt oki Ver si on;
CK CHAR nanufacturerl 3 2];
CK FLAGS fl ags;
CK CHAR | i braryDescription[32];
CK VERSI ON | i braryVersi on;

} K INFQ

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMESHANISMS Page 27213 Page 27

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility with
future revisions of this interface

manufacturer|D ID of the Cryptoki library manufacturer. Must be padded
with the blank character (*)

flags bit flags reserved for future versions. Must be zero for this
version

libraryDescription character-string description of the library. Mus t be padded
with the blank character (*)

libraryVersion Cryptoki library version number

For libraries written to the Cryptoki v2.0 document, the value of cryptokiVersion should be 2.0; the
value of libraryVersion is the version number of the library software itself.

CK_INFO_PTR

CK_INFO_PTR points to a CK_INFO structure. It is implementation-dependent.

CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an application. It
is defined as follows:

typedef CK_ULONG CK_NOTI FI CATI O\

For this version of Cryptoki, the following types of notifications are defined:

#defi ne OKN_SURRENDER 0
#defi ne OKN_COVPLETE 1

#def i ne CKN_DEVI CE_REMOVED 2
#defi ne CKN_TCKEN [NSERTI CN 3

The notifications have the following meanings:

CKN_SURRENDER Cryptoki is surrendering the execution of a function
executing in serial so that the application may perform
other operations. After performing any desired operations,
the application should indicate to Cryptoki whether to
continue or cancel the function.

CKN_COMPLETE a function running in parallel has completed.
CKN_DEVICE_REMOVED Cryptoki has detected that the device underlying the token

has been removed from the reader. Not all slots/tokens
support this notification.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 28214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKN_TOKEN_INSERTION Cryptoki has detected that the device underlying the token
has been inserted into the reader. Not all slots/tokens
support this notification.

7.2 Slot and token types

Cryptoki represents slot and token information with the following types:

CK_SLOT_ID

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as follows;
typedef CK ULONG CK SLOT | D

A CK_SLOT _ID isreturned by C_GetSlotList.

CK_SLOT_ID_PTR

CK_SLOT_ID_PTR pointstoa CK_SLOT _ID. Itis implementation-dependent.

CK_SLOT_INFO

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK SLOT | NFO {
CK_CHAR sl ot Descri ption[64];
CK_CHAR nanuf acturer| 0 32];
CK FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi rmnar eVer si on;
} K SLOT_INFQ

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be padded
with the blank character (*)

manufacturer|D ID of the slot manufacturer. Must be padded with the blank
character (*)

flags bits flags that provide capabilities of the slot.
hardwareVersion version number of the slot’s hardware
firmwareVersion version number of the slot’s firmware

The following table defines the flags parameter:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMECHANISMS

Table 77-11, Slot Information Flags

Bit Flag Mask Meaning

CKF_TOKEN_PRESENT 0x00000001 | TRUE if a token is present in the slot (e.g., a
device is in the reader)

CKF_REMOVABLE_DEVICE | 0x00000002 | TRUE if the reader supports removable devices

CKF_HW _SLOT 0x00000004 | TRUE if the slot is a hardware slot, as opposed

to a software slot implementing a “soft token”

CK_SLOT_INFO_PTR

CK_SLOT_INFO_PTR points to a CK_SLOT_INFO structure. It is implementation-dependent.

CK_TOKEN_INFO

CK_TOKEN_INFO provides information about a token. It is defined as follows:
typedef struct CK TCKEN | NFO {

CK_CHAR | abel [32];

CK_CHAR nanuf acturer! 0 32] ;

CK_CHAR nodel [16] ;

CK_CHAR seri al Nunber [16] ;

CK _FLAGS fl ags;

CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;

CK_ULONG ul MaxRwSessi onCount ;

CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;

CK_ULONG ul Tot al Publ i cMenory;

CK_ULONG ul FreePubl i

CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePri vat eMenory;

chMenory;

CK_VERSI ON har dwar eVer si on;
CK VERSI ON fi rmnar eVer si on;

OK_CHAR ut cTi e[16] ;
} OK_TOKEN_ | NFQ

The fields of the structure have the following meanings:

label

manufacturerlD

model

serialNumber

This is a DRAFT document.

application-defined label, assigned during token
initialization. Must be padded with the blank character (*)

ID of the device manufacturer. Must be padded with the
blank character (*)

model of the device. Must be padded with the blank
character (*)

character-string serial number of the device. Must be
padded with the blank character (*)

Copyright © 1994-7 RSA Laboratories

Page 30214

flags

ulMaxSessionCount

ulSessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ulTotalPublicMemory

ulFreePublicMemory

ulTotalPrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

Copyright © 1994-7 RSA Laboratories

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

bit flags indicating capabilities and status of the device as
defined below

maximum number of sessions that can be opened with the
token at one time

number of sessions that are currently open with the token

maximum number of read/write sessions that can be
opened with the token at one time

number of read/write sessions that are currently open with
the token

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory in bytes in which public objects
may be stored

the amount of free (unused) memory in bytes for public
objects

the total amount of memory in bytes in which private
objects may be stored

the amount of free (unused) memory in bytes for private
objects

version number of hardware
version number of firmware

current time as a character-string of length 16, represented
in the format YYYYMMDDhhmmssxx (4 characters for the
year; 2 characters each for the month, the day, the hour, the
minute, and the second; and 2 additional reserved ‘0’
characters). The value of this field only makes sense for
tokens equipped with a clock, as indicated in the token
information flags (see below)

This is a DRAFT document.

DATA TYPESDATA TYPESMECHANISMS

The following table defines the flags parameter:

Table 77-22, Token Information Flags

Bit Flag

Mask

Meaning

CKF_RNG

0x00000001

TRUE if the token has its
own random number
generator

CKF_WRITE_PROTECTED

0x00000002

TRUE if the token is write-
protected

CKF_LOGIN_REQUIRED

0x00000004

TRUE if a user must be
logged in to perform
cryptographic functions

CKF_USER_PIN_INITIALIZED

0x00000008

TRUE if the normal user’s
PIN has been initialized

CKF_EXCLUSIVE_EXISTS

0x00000010

TRUE if an exclusive session
exists

CKF_RESTORE_KEY_NOT_NEEDED

0x00000020

TRUE if a successful save of
a session’s cryptographic
operations state always
contains all keys needed to
restore the state of the
session

CKF_CLOCK_ON_TOKEN

0x00000040

TRUE if token has its own
hardware clock

CKF_SUPPORTS_PARALLEL

0x00000080

TRUE if token supports
parallel sessions through this
Cryptoki library

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token has a
“protected authentication
path”, whereby a user can
log in to the token without
passing a PIN through the
Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS

0x00000200

TRUE if a single session with
the token can perform dual
cryptographic operations
(see Section 9.139:13)

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.

An

application may be unable to perform certain actions on a write-protected token; these actions can

include any of the following, among other actions;

Creating/modifying an object on the token.

Creating/modifying a token object on the token.

Changing the SO’s PIN.

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 32214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Changing the normal user’s PIN.

The ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount, ulRwSessionCount, ulMaxPinLen,
ulMinPinLen, ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory, and
ulFreePrivateMemory fields have a quirk in their interpretations. For each of these fields, it is
possible for a token to return a special value which means, “I cannot/will not divulge that
information.” This value is the integer value -1, which (unfortunately) does not fit into a variable
of type CK_ULONG. The upshot of all this is that the correct way to interpret (for example) the
ulMaxSessionCount field is as follows:

CK_TOKEN_| NFO i nf o;

if ((CK_LONG i nfo.ul MaxSessi onCount == -1) {
/* Token refuses to give val ue of ul MaxSessi onCount */

} else {
/* info.ul MaxSessi onCount real ly does contain what it should */

CK_TOKEN_INFO_PTR

CK_TOKEN_INFO_PTR points to a CK_TOKEN_INFO structure. It is implementation-
dependent.

7.3 Session types

Cryptoki represents session information with the following types:

CK_SESSION_HANDLE

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is defined as
follows:

typedef CK ULONG CK _SESSI ON HANDLE;

CK_SESSION_HANDLE PTR

CK_SESSION_HANDLE_PTR points to a CK_SESSION_HANDLE. It is implementation-
dependent.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMESHANISMS Page-33213 Page 33

CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 5.45:4. It is defined as |
follows:

typedef CK ULONG CK _USER TYPE;

For this version of Cryptoki, the following types of users are defined:

#define CKU SO 0O
#define CKU USER 1

CK_STATE

CK_STATE holds the session state, as decribed in Sections 5.5.15:5:% and 5.5.25:5:2. It is defined
as follows:

typedef CK ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

#define CKS_RO PUBLI C_SESSI ON 0
#define OKS_RO_USER_FUNCTI ONS 1
#defi ne OKS_RW PUBLI C_SESSI ON 2
#defi ne OKS_RW USER_FUNCTI ONS 3
#defi ne CKS_RW SO FUNCTI ONS 4

CK_SESSION_INFO

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK SESSI ON | NFO {
CK SLOT_ID slotl D
CK_STATE st at €;
CK _FLAGS fl ags;
CK_ULONG ul Devi ceError;
} OK_SESSI ON | NFQ

The fields of the structure have the following meanings:
slotID ID of the slot that interfaces with the token
state the state of the session

flags bit flags that define the type of session; the flags are defined
below

ulDeviceError an error code defined by the cryptographic device. Used
for errors not covered by Cryptoki.

The following table defines the flags parameter:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 34214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 77-33, Session Information Flags

Bit Flag Mask Meaning

CKF_EXCLUSIVE_SESSION 0x00000001 | TRUE if the session is exclusive; FALSE if the
session is shared

CKF_RW_SESSION 0x00000002 | TRUE if the session is read/write; FALSE if
the session is read-only

CKF_SERIAL_SESSION 0x00000004 | TRUE if cryptographic functions are

performed in serial with the application;
FALSE if the functions may be performed in
parallel with the application

CKF_INSERTION_CALLBACK 0x00000008 | this flag is write-only, i.e., is supplied as an
argument to a C_OpenSession call, but is
never set in a session’s CK_SESSION_INFO
structure. It is TRUE if the call is a request for
a token insertion callback, instead of being a
request to open a session

CK_SESSION_INFO_PTR
CK_SESSION_INFO_PTR points to a CK_SESSION_INFO structure. It is implementation-
dependent.
7.4 Object types

Cryptoki represents object information with the following types:

CK_OBJECT_HANDLE

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as follows:
typedef CK_ULONG CK_CBJECT_HANDLE;

When an object is created or found on a token, Cryptoki assigns it an object handle for sessions to
use to access it. A particular object on a token does not necessarily have a handle which is fixed
for the lifetime of the object; however, if a particular session can use a particular handle to access
a particular object, then that session will continue to be able to use that handle to acces that object
as long as the session continues to exist, the object continues to exist, and the object continues to
be accessible to the session.

CK_OBJECT HANDLE_PTR

CK_OBJECT_HANDLE_PTR points to a CK_OBJECT HANDLE. It is implementation-
dependent.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMESHANISMS Page-35213 Page 35

CK_OBJECT_CLASS

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that Cryptoki
recognizes. It is defined as follows:

typedef CK_ULONG CK_(BJECT_CLASS;

For this version of Cryptoki, the following classes of objects are defined:

#def i ne CKO_DATA 0x00000000
#def i ne CKO_CERTI FI CATE 0x00000001
#def i ne CKO_PUBLI C_KEY 0x00000002
#def i ne CKO_PR VATE_KEY 0x00000003
#def i ne CKO_SECRET_KEY 0x00000004

#def i ne CKO VENDCR _DEFI NED 0x80000000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their object classes through the PKCS
process.

CK_OBJECT _CLASS_PTR
CK_OBJECT_CLASS PTR points to a CK_OBJECT_CLASS structure. It is implementation-
dependent.

CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:
typedef CK ULONG CK _KEY TYPE

For this version of Cryptoki, the following key types are defined:

#def i ne CKK_RSA 0x00000000
#def i ne CKK_DSA 0x00000001
#def i ne CKK_DH 0x00000002
#def i ne CKK_ECDSA 0x00000003
#def i ne CKK_NAYFLY 0x00000004
#def i ne CKK_KEA 0x00000005
#def i ne CKK_GENERI C_SECRET 0x00000010
#defi ne CKK_RC2 0x00000011
#defi ne CKK_R4 0x00000012
#def i ne CKK_DES 0x00000013
#def i ne CKK_DES2 0x00000014
#def i ne CKK_DES3 0x00000015
#def i ne CKK_CAST 0x00000016
#def i ne CKK_CAST3 0x00000017
#def i ne CKK_CAST5 0x00000018
#defi ne CKK_RC5 0x00000019
#def i ne CKK_I DEA 0x0000001A
#def i ne CKK_SKI PJACK 0x0000001B
#def i ne CKK_BATON 0x0000001C
#defi ne CKK_JUN PER 0x0000001D
#def i ne CKK_CDWF 0x0000001E

#def i ne CKK_VENDCR DEFI NED 0x80000000

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 36214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their key types through the PKCS process.

CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as follows:
typedef OK_ULONG CK_CERTI FI CATE_TYPE;

For this version of Cryptoki, the following certificate types are defined:

#def i ne CKC_X 509 0x00000000
#def i ne CKC_VENDCR DEFI NED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their certificate types through the PKCS
process.

CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as follows:
typedef CK_ULONG CK_ATTRI BUTE TYPE;

For this version of Cryptoki, the following attribute types are defined:

#def i ne CKA_CLASS 0x00000000
#def i ne CKA_TCKEN 0x00000001
#def i ne CKA_PR VATE 0x00000002
#def i ne CKA_LABEL 0x00000003
#def i ne CKA_APPLI CATI ON 0x00000010
#defi ne CKA_VALUE 0x00000011
#def i ne CKA_CERTI FI CATE_TYPE 0x00000080
#defi ne CKA_| SSUER 0x00000081
#def i ne CKA_SERI AL_NUMBER 0x00000082
#def i ne CKA_KEY_TYPE 0x00000100
#def i ne CKA_SUBJECT 0x00000101
#define CKA_ID 0x00000102
#def i ne CKA_SENSI Tl VE 0x00000103
#def i ne CKA_ENCRYPT 0x00000104
#def i ne CKA_DECRYPT 0x00000105
#def i ne CKA_WRAP 0x00000106
#def i ne CKA_UNWRAP 0x00000107
#defi ne CKA_SI GN 0x00000108
#def i ne CKA_SI GN_RECOVER 0x00000109
#def i ne CKA_VER FY 0x0000010A
#def i ne CKA_VER FY_RECOVER 0x0000010B
#def i ne CKA_DER VE 0x0000010C
#def i ne CKA_START_DATE 0x00000110
#def i ne CKA_END DATE 0x00000111
#def i ne CKA_MCDULUS 0x00000120
#def i ne CKA_MCDULUS BI TS 0x00000121
#def i ne CKA_PUBLI C_EXPONENT 0x00000122

#def i ne CKA_PR VATE_EXPONENT 0x00000123

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMESHANISMS Page 37213 Page 37

#defi ne CKA_ PR ME_1 0x00000124
#defi ne CKA_ PR ME_2 0x00000125
#def i ne CKA_EXPONENT_1 0x00000126
#def i ne CKA_EXPONENT_2 0x00000127
#def i ne CKA_CCEFFI O ENT 0x00000128
#defi ne CKA_PR ME 0x00000130
#def i ne CKA_SUBPRI ME 0x00000131
#def i ne CKA_BASE 0x00000132
#defi ne CKA_VALUE BI TS 0x00000160
#defi ne CKA_VALUE_LEN 0x00000161
#def i ne CKA_EXTRACTABLE 0x00000162
#def i ne CKA_LOCAL 0x00000163

#def i ne CKA_NEVER EXTRACTABLE 0x00000164
#defi ne CKA_ALWAYS SENSI TI VE 0x00000165
#def i ne CKA_MXDI FI ABLE 0x00000170
#def i ne CKA_VENDCR_DEFI NED 0x80000000

Section 88 defines the attributes for each object class. Attribute types CKA_VENDOR_DEFINED
and above are permanently reserved for token vendors. For interoperability, vendors should
register their attribute types through the PKCS process.

CK_ATTRIBUTE

CK_ATTRIBUTE is a structure that includes the type, length and value of an attribute. It is
defined as follows:

typedef struct CK ATTR BUTE {
CK_ATTRI BUTE_TYPE type;
CK VA D _PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_ATTR BUTE;

The fields of the structure have the following meanings:
type the attribute type
pValue pointer to the value of the attribute
ulValueLen length in bytes of the value
If an attribute has no value, then pValue = NULL_PTR, and ulValueLen = 0. An array of
CK_ATTRIBUTESs is called a “template” and is used for creating, manipulating and searching for
objects. Note that pValue is an “void” pointer, facilitating the passing of arbitrary values. Both

the application and Cryptoki library must ensure that the pointer can be safely cast to the
expected type (e.g., without word-alignment errors).

CK_ATTRIBUTE_PTR

CK_ATTRIBUTE_PTR points to a CK_ATTRIBUTE structure. It is implementation-dependent.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 38214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK DATE {
CK _CHAR year[4];
CK_CHAR nont h[2] ;
CK_CHAR day][2] ;

} OK_DATE;

The fields of the structure have the following meanings:
year the year (“1900” - “9999”)
month the month (“01” - ©“12”)
day the day (“01” - “31)
The fields hold numeric characters from the character set in Table 44-33TFable4-3, not the literal
byte values.
7.5 Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

CK_MECHANISM_TYPE

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as follows:
typedef CK_ULONG CK_MECHAN SM TYPE;

For Cryptoki v2.0, the following mechanism types are defined:

#defi ne OKM RSA PKCS_KEY_PA R GEN 0x00000000
#defi ne OKM_RSA_PKCS 0x00000001
#defi ne OKM RSA_9796 0x00000002
#defi ne OKM_RSA_X_509 0x00000003
#defi ne OKM_MD2_RSA_PKCS 0x00000004
#defi ne OKM_MD5_RSA_PKCS 0x00000005
#defi ne OKM SHAL_RSA_PKCS 0x00000006
#defi ne OKM DSA KEY_PAl R GEN 0x00000010
#defi ne OKM DSA 0x00000011
#defi ne OKM DSA_SHAL 0x00000012
#defi ne OKM DH_PKCS_KEY_PAI R GEN 0x00000020
#defi ne OKM DH_PKCS_DER VE 0x00000021
#defi ne OKM RC2_KEY_GEN 0x00000100
#defi ne OKM RC2_ECB 0x00000101
#defi ne OKM RC2_CBC 0x00000102
#defi ne OKM_RC2_MAC 0x00000103
#defi ne OKM_RC2_MAC_GENERAL 0x00000104
#def i ne OKM RC2_CBC_PAD 0x00000105
#defi ne OKM RCA_KEY_GEN 0x00000110
#defi ne OKM RCA 0x00000111
#defi ne OKM DES_KEY_GEN 0x00000120
#defi ne OKM DES_ECB 0x00000121

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMECHANISMS

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

OKM DES_CBC
OKM DES_MAC

OKM DES_MAC_GENERAL
OKM DES_CBC_PAD

OKM DES2_KEY _GEN
OKM DES3_KEY_GEN
OKM DES3_ECB

OKM DES3_CBC

OKM DES3_MAC

OKM DES3_MAC_GENERAL
OKM DES3_CBC_PAD
OKM_CDVF_KEY_GEN
OKM_CDVF_ECB
CKM_CDVF_CBC
CKM_CDVF_MAC
CKM_CDVF_MAC_GENERAL
CKM_CDVF_CBC_PAD
KM MD2

KM MD2_HVAC
OKM_MD2_HVAC_GENERAL
KM M6

KM _MD5_HVAC
COKM_MD5_HVAC_GENERAL
KM SHA 1
KM SHA 1_HVAC
OKM SHA 1_

OKM CAST_KEY_GEN
OKM CAST_ECB
OKM_CAST_CBC
OKM_CAST_MAC
OKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD

OKM CAST3_KEY_GEN
OKM CAST3_ECB
CKM_CAST3_CBC
CKM_CAST3_MAC

OKM CAST3_MAC GENERAL
CKM_CAST3_CBC_PAD
OKM CAST5_KEY_GEN
OKM CAST5_ECB
CKM_CAST5_CBC
CKM_CAST5_MAC

OKM CAST5_MAC GENERAL
CKM_CAST5_CBC_PAD
OKM RC5_KEY_GEN

OKM RC5_ECB~

KM RC5_CBC

OKM RC5_NMAC
CKM_RC5_MAC_GENERAL
KM RC5_CBC_PAD

OKM | DEA_KEY_GEN
CKM | DEA_ECB

OKM | DEA_CBC

OKM | DEA_MAC

OKM | DEA_MAC_GENERAL
CKM | DEA_CBC_PAD

OKM_GENER! C_SECRET_KEY_GEN
OKM_OONCATENATE_BASE_AND _KEY

CKM_OONCATENATE_BASE_AND _DATA
CKM_OONCATENATE_DATA_AND BASE

CKM_XCR_BASE_AND_DATA

This is a DRAFT document.

HVAC_CGENERAL

0x00000122
0x00000123
0x00000124
0x00000125
0x00000130
0x00000131
0x00000132
0x00000133
0x00000134
0x00000135
0x00000136
0x00000140
0x00000141
0x00000142
0x00000143
0x00000144
0x00000145
0x00000200
0x00000201
0x00000202
0x00000210
0x00000211
0x00000212
0x00000220
0x00000221
0x00000222
0x00000300
0x00000301
0x00000302
0x00000303
0x00000304
0x00000305
0x00000310
0x00000311
0x00000312
0x00000313
0x00000314
0x00000315
0x00000320
0x00000321
0x00000322
0x00000323
0x00000324
0x00000325
0x00000330
0x00000331
0x00000332
0x00000333
0x00000334
0x00000335
0x00000340
0x00000341
0x00000342
0x00000343
0x00000344
0x00000345
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364

Copyright © 1994-7 RSA Laboratories

Page 40214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

#defi ne OKM EXTRACT_KEY_FROM KEY 0x00000365
#define OKM SSL3_PRE_MASTER KEY_GEN 0x00000370
#defi ne OKM SSL3_MASTER KEY DER VE 0x00000371
#define OKM SSL3_KEY_AND MAC DERIVE 0x00000372
#define OKM SSL3_MD5_MAC 0x00000380
#define CKM SSL3_SHAL MAC 0x00000381
#defi ne CKM_MD5_KEY_DER! VATI ON 0x00000390
#defi ne CKM_MD2_KEY_DER! VATI ON 0x00000391
#defi ne CKM_SHAL_KEY DER VATI ON 0x00000392
#defi ne OKM_PBE_MX2_DES_CBC 0x000003A0
#defi ne OKM_PBE_MD5_DES_CBC 0x000003A1
#def i ne CKM_PBE_MD5_CAST CBC 0x000003A2
#defi ne OKM_PBE_MD5_CAST3_CBC 0x000003A3
#defi ne OKM_PBE_MD5_CAST5_CBC 0x000003A4
#defi ne CKM PBE_SHAL CAST5 CBC 0x000003A5
#define OKM KEY WRAP_LYNKS 0x00000400
#define OKM KEY WRAP_SET_QAEP 0x00000401
#defi ne OKM_SKI PIACK_KEY_GEN 0x00001000
#defi ne CKM_SKI PJACK_ECB64 0x00001001
#defi ne CKM_SKI PJACK_CBCB4 0x00001002
#defi ne CKM_SKI PJACK_CFB64 0x00001003
#defi ne CKM_SKI PJACK_CFB64 0x00001004
#defi ne CKM_SKI PJACK_CFB32 0x00001005
#defi ne CKM_SKI PJACK_CFB16 0x00001006
#defi ne OKM_SKI PJACK_CFB8 0x00001007
#defi ne OKM_SKI PJACK_WRAP 0x00001008
#defi ne OKM_SKI PJACK_PR VATE_W\RAP 0x00001009
#defi ne OKM SKI PIACK_RELAYX 0x0000100a
#defi ne OKM KEA KEY_PAI R GEN 0x00001010
#defi ne CKM KEA KEY DER VE 0x00001011
#defi ne CKM_FCRTEZZA_TI MESTAWP 0x00001020
#defi ne OKM BATON KEY GEN 0x00001030
#defi ne CKM_BATON ECBI128 0x00001031
#defi ne OKM_BATON _ECBO6 0x00001032
#defi ne CKM_BATON CBC128 0x00001033
#defi ne CKM_BATON_COUNTER 0x00001034
#defi ne OKM_BATON SHUFFLE 0x00001035
#defi ne OKM BATON WRAP 0x00001036
#defi ne OKM_ECDSA_KEY_PAI R GEN 0x00001040
#defi ne OKM ECDSA 0x00001041
#defi ne OKM ECDSA_SHAL 0x00001042
#define CKM_MAYFLY_KEY_PAI R_GEN 0x00001050
#defi ne OKM_MAYFLY _KEY DER VE 0x00001051
#define CKM_JUN PER KEY_GEN 0x00001060
#defi ne CKM_JUN PER ECB128 0x00001061
#define CKM_JUN PER_CBC128 0x00001062
#define CKM_JUN PER_COUNTER 0x00001063
#define KM JUN PER_SHUFFLE 0x00001064
#define CKM_JUN PER WRAP 0x00001065
#defi ne OKM_FASTHASH 0x00001070
#defi ne CKM VENDCR_DEFI NED 0x80000000

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their mechanism types through the PKCS

process.

Copyright © 1994-7 RSA Laboratories

This is a DRAFT document.

DATA TYPESDATA TYPESMESHANISMS Page-41213 Page 41

CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE_PTR points to a CK _MECHANISM_TYPE structure. It is
implementation-dependent.

CK_MECHANISM

CK_MECHANISM is a structure that specifies a particular mechanism. It is defined as follows:

typedef struct CK MECHAN SM {
CK_MECHAN SM TYPE nechani sm
CK VA D PTR pPar anet er;
CK_ULONG ul Par arret er Len;

} K _MECHAN SM

The fields of the structure have the following meanings:

mechanism the type of mechanism
pParameter pointer to the parameter if required by the mechanism
usParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values. Both the
application and Cryptoki library must ensure that the pointer can be safely cast to the expected
type (e.g., without word-alignment errors).

CK_MECHANISM_PTR

CK_MECHANISM_PTR points to a CK_MECHANISM structure. It is implementation-
dependent.

CK_MECHANISM_INFO

CK_MECHANISM_INFO is a structure that provides information about a particular mechanism.
It is defined as follows:

typedef struct CK MECHAN SM | NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK _FLAGS f1 ags;

} OK_MECHAN SM | NFQ

The fields of the structure have the following meanings:
ulMinKeySize the minimum size of the key for the mechanism
ulMaxKeySize the maximum size of the key for the mechanism

flags bit flags specifying mechanism capabilities

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 42214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless values.

The following table defines the flags parameter:

Table 77-44, Mechanism Information Flags

Bit Flag Mask Meaning

CKF_HW 0x00000001 | TRUE if the mechanism is performed by the
device; FALSE if the mechanism is performed in
software

CKF_ENCRYPT 0x00000100 | TRUE if the mechanism can be used with
C_Encryptlnit

CKF_DECRYPT 0x00000200 | TRUE if the mechanism can be used with
C_Decryptlnit

CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used with
C_Digestlnit

CKF_SIGN 0x00000800 | TRUE if the mechanism can be used with
C_Signinit

CKF_SIGN_RECOVER 0x00001000 | TRUE if the mechanism can be used with
C_SignRecoverlnit

CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used with
C_Verifylnit

CKF_VERIFY_RECOVER 0x00004000 | TRUE if the mechanism can be used with
C_VerifyRecoverlnit

CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used with
C_GenerateKey

CKF_GENERATE_KEY_PAIR | 0x00010000 | TRUE if the mechanism can be used with
C_GenerateKeyPair

CKF_WRAP 0x00020000 | TRUE if the mechanism can be used with
C_WrapKey

CKF_UNWRAP 0x00040000 | TRUE if the mechanism can be used with
C_UnwrapKey

CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used with
C_DeriveKey

CKF_EXTENSION 0x80000000 | TRUE if an extension to the flags; FALSE if no

extensions. Must be FALSE for this version.

CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO_PTR points to a CK_MECHANISM_INFO

implementation-dependent.

7.6 Function types

structure. It is

Cryptoki represents information about functions with the following data types:

Copyright © 1994-7 RSA Laboratories

This is a DRAFT document.

DATA TYPESDATA TYPESMECHANISMS

CK_ENTRY

CK_ENTRY is not really a type. Rather, it is a string used-which is provided to a C compiler in a |

given environment to produce an entry into Cryptoki (i.e
implementation-dependent. For a Win32 Cryptoki .dll, it might be “__|
) ”. For a Win16 Cryptoki .dll, it might be “_export

might be

CK_RV

_far

_pascal

., a Cryptoki function).
decl spec(dlI | export
. For a Unix library, it

It is

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as follows:
typedef CK ULONG CK RV,

For this version of Cryptoki, the following return values are defined:

#defi ne CKR_ (K 0x00000000
#def i ne CKR_CANCEL 0x00000001
#def i ne CKR_HCST_MEMORY 0x00000002
#define CKR_SLOT_I D | NVALI D 0x00000003
#def i ne CKR_GENERAL_ERRCR 0x00000005
#defi ne CKR_FUNCTI CN_FAI LED 0x00000006
#def i ne CKR_ATTRI BUTE_READ ONLY 0x00000010
#def i ne CKR_ATTRI BUTE_SENSI Tl VE 0x00000011
#defi ne CKR_ATTRI BUTE_TYPE_| NVALI D 0x00000012
#def i ne CKR_ATTRI BUTE_VALUE | NVALI D 0x00000013
#defi ne CKR_DATA | NVALI D 0x00000020
#def i ne CKR_DATA LEN RANGE 0x00000021
#def i ne CKR_DEVI CE_ERRCR 0x00000030
#def i ne CKR_DEVI CE_MVEMCRY 0x00000031
#def i ne CKR_DEVI CE_REMOVED 0x00000032
#def i ne CKR_ENCRYPTED DATA | NVALI D 0x00000040
#defi ne CKR_ENCRYPTED DATA LEN RANGE 0x00000041
#def i ne CKR_FUNCTI ON_CANCELED 0x00000050
#defi ne CKR_FUNCTI CN_NOT_PARALLEL 0x00000051
#def i ne CKR_FUNCTI ON_PARALLEL 0x00000052
#def i ne CKR_FUNCTI ON_NOT_SUPPCRTED 0x00000054
#def i ne CKR_KEY_HANDLE | NVALI D 0x00000060
#def i ne CKR_KEY_S| ZE RANGE 0x00000062
#def i ne CKR_KEY_TYPE_| NOONSI STENT 0x00000063
#defi ne CKR_KEY_NOT_NEEDED 0x00000064
#def i ne CKR_KEY_CHANGED 0x00000065
#def i ne CKR_KEY_NEEDED 0x00000066
#def i ne CKR_KEY_| NDI GESTI BLE 0x00000067
#def i ne CKR_KEY_FUNCTI ON_NOT_PERM TTED 0x00000068
#def i ne CKR_KEY_NOT_WRAPPABLE 0x00000069
#def i ne CKR_KEY_UNEXTRACTABLE 0x0000006A
#def i ne CKR_MECHANI SM | NVALI D 0x00000070
#def i ne CKR_MECHANI SM PARAM | NVALI D 0x00000071
#def i ne CKR_CBJECT _HANDLE | NVALI D 0x00000082
#def i ne CKR_CPERATI ON_ACTI VE 0x00000090
#def i ne CKR_CPERATI ON_NOT | NI TI ALI ZED 0x00000091
#define CKR_PI N_| NOCRRECT | 0x000000A0
#define CKR_PI N_I NVALI D 0x000000A1
#defi ne CKR_PI N_LEN RANCGE 0x000000A2
#defi ne CKR_ PIN E XPI RED 0x000000A3
#defi ne CKR_PI N LOCKED 0x000000A4
#def i ne CKR_SESSI ON_CLOSED 0x000000B0

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 44214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

#defi ne CKR_SESSI ON_COUNT 0x000000B1
#defi ne OKR_SESSI ON_EXCLUSI VE_EXI STS 0x000000B2
#define OKR_SESSI ON_HANDLE_| NVALI D 0x000000B3
#define CKR_SESSI ON_PARALLEL_NOT_SUPPCRTED 0x000000B4
#define CKR_SESSI ON_READ ON\LY 0x000000B5
#define OKR_SESSI ON_EXI STS 0x000000B6
#define OKR_SESSI ON_READ ONLY_EXI STS 0x000000B7
#defi ne OKR_SESSI ON_READ WR TE_SO EXI STS 0x000000B8
#define OKR_SI GNATURE_| NVALI D 0x000000C0
#define OKR_SI GNATURE_LEN RANGE 0x000000C1
#defi ne OKR_TEMPLATE | NCOMPLETE 0x000000D0
#defi ne CKR_TEMPLATE_| NCONSI STENT 0x000000D1
#define CKR_TCKEN NOT_PRESENT 0x000000EQ
#defi ne OKR_TOKEN_NOT_RECOGN ZED 0x000000E1
#defi ne OKR_TOKEN WR TE_PROTECTED 0x000000E2
#defi ne CKR_UNWRAPPI NG_KEY_HANDLE_| NVALI D 0x000000F0
#defi ne CKR_UNWRAPPI NG _KEY_SI ZE_RANGE 0x000000F1
#defi ne OKR_UNWRAPPI NG_KEY_TYPE_| NOONS| STENT 0x000000F2
#defi ne CKR_USER_ALREADY LOGGED | N 0x00000100
#define OKR_USER_NOT_LOGGED | N 0x00000101
#define OKR_USER PI N_NOT_| NI TI ALI ZED 0x00000102
#define OKR_USER TYPE_| NVALI D 0x00000103
#defi ne OKR_ WRAPPED KEY_ | NVALI D 0x00000110
#defi ne CKR_ WRAPPED KEY LEN RANGE 0x00000112
#defi ne CKR_ WRAPPI NG_KEY HANDLE | NVALI D 0x00000113
#defi ne CKR_ WRAPPI NG KEY_S| ZE_ RANGE 0x00000114
#defi ne CKR_ WRAPPI NG _KEY _TYPE | NOONSI STENT ~ 0x00000115
#defi ne CKR_RANDOM SEED NOT_SUPPORTED 0x00000120
#defi ne OKR_RANDCM NO_RNG 0x00000121
#define OKR_| NSERTI ON_CALLBACK_NOT_SUPPORTED 0x00000141
#defi ne OKR_BUFFER TOO SMALL 0x00000150
#defi ne OKR_SAVED STATE | NVALI D 0x00000160
#defi ne CKR_| NFORVATI ON_SENSI TI VE 0x00000170
#defi ne CKR_STATE_UNSAVEABLE 0x00000180
#defi ne CKR_VENDCR_DEFI NED 0x80000000

Section 9.194 defines the meaning of each CK_RV value. Return values
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their return values through the PKCS process.

CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification
callbacks. It is implementation-dependent, but it is typically defined as follows, where CK_PTR is
the C string used to create function pointers (e.g., “*”):

typedef CK RV (CK_ENTRY CK_PTR CK_NOTI FY) (
CK_ SESSI ON HANDLE hSessi on,
CK NOTI FI CATI ON event ,
CK_ VA D _PTR pAppl i cation

)
The arguments to a notification callback function have the following meanings:

hSession The handle of the session performing the callback

event The type of notification callback

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

DATA TYPESDATA TYPESMESHANISMS Page-45213 Page 45

pApplication An application-defined value. This is the same value as was
passed to C_OpenSession to open the session performing
the callback

Cryptoki also defines an entire family of other function pointer types. For each function C_XXX
in the Cryptoki API (there are 67 such functions in Cryptoki v2.0; see Section 99 for detailed |
information about each of them), Cryptoki defines a type CK_C_XXX, which is a pointer to a
function of C_XXX’s type.

CK_FUNCTION_LIST

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function pointer to
each function in the Cryptoki API. It is defined as follows:

typedef struct CK FUNCTION LI ST {
CK_VERSI ON ver si on;
CK Clnitialize Clnitialize;
CK C Finalize C Finalize;
(C GetInfo C Getlnfo;
> Get FunctionLi st C Get Functi onLi st;
> GetSlotList C GetSlotlList;
> GetSlotInfo C GetSlotlnfo;
> Get Tokenl nfo C_Get Tokenl nf o;
> Get Mechani snii st C Get Mechani snii st ;
> Get Mechani s nfo C_Get Mechani smi nf o;
> I'ni t Token C I nit Token;
> InitPINCInitPIN
tPIN C SetPI N
enSessi on C (pe nSessi on;
oseSessi on C d oseSessi on;
oseAl | Sessions C A oseAl | Sessi ons;
t Sessi onl nfo C Get Sessi onl nf o;
t QperationState C Get perationSt at e;
t QperationState C Set CperationState;
> Logi n C Logi n;
> Logout C Logout ;
eate(hj ect C O eate(ject;
pyChj ect C CopyQhj ect ;
stroy(oj ect C Dest robej ect;
t (bj ect Si ze C Get Obj ect Si ze;
tAttributeVal ue C Get Attri buteVval ue;
tAttributeVal ue C Set AttributeVal ue;
i ndCbj ectslnit C FindChjectslnit;
i ndQbj ects C_Fi nd(j ects;
i ndQvj ect sFinal C Fi ndCbj ect sFi nal ;
cryptinit C Encryptinit;
crypt C_Encrypt;
crypt Updat e C Encrypt Updat e;
cryptFinal C EncryptFinal;
cryptinit C Decryptlnit;
crypt C Decrypt;
crypt Updat e C Decrypt Updat e;
crypt Final C DecryptFinal;
i gestlnit CDgestlnit;
i gest C D gest;
i gest Updat e C Di gest Updat e;
i gest Key C D gest Key;
i gest Final C D gestFinal;

989999999999

0,0,0,0,0,0,0,0,0,0,00,00,0,00,0,00,000,000000000000000/0,
rr%@QQQQQ

RRIARIIIJFJKLZILKRARAZIAIARQARQJARQARQAQRQRQLLRLLRLAILY
0000 E R Y PINTI I NI EEPO0

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 46214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

ignlnit CSignlnit;

i gn C Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFinal ;

i gnRecoverlnit C SignRecoverlnit;

i gnRecover C_Si gnRecover ;

erifylnit CVerifylnit;

erify C Verify;

erifyUpdate C VerifyUpdat e;

erifyFinal C VerifyFinal;

erifyRecoverinit C Veri fyRecoverI nit;

eri fyRecover C Veri i fyRecover;

gest Encrypt Updat e C Di gest Encrypt Updat e;
crypt D gest Updat e C Decrypt D gest Updat e;
i gnEncrypt Uodate C SignEncry pt Updat e;
crypt Veri fyUpdat e C Decrypt Veri fyUpdat e;
ner at eKey C Cener at eKey;

ner at eKeyPai r C _Gener at eKeyPai r;

apKey C W apKey;

wr apKey C_Unw apKey;

ri vekey C DeriveKey;

edRandom C_SeedRandom

ner at eRandom C_Gener at eRandom

t Functi onSt at us C_Cet Functi onSt at us;

(. ncel Function C Cancel Functi on;

UNCTI ON_LI ST;

v'v'vv'vy

<<<<<<

RRIZZRARRRRIIAIAFARQARQARQARQRX/RQIJIQI[K/G
ooooooooooooooooooooooooo
QQ%QSEQQQQQD

R
9

Each Cryptoki library has a CK_FUNCTION_LIST structure, and a pointer to it may be obtained
by the C_GetFunctionList function (see Section 9.29-2). The value that this pointer points to can
be used by an application to quickly and-easHyfind-eut-which-Cryptokifunctions—the library

supports{and-where-the code-for those-functions-is-located)—If-afind out where the code for each
functlon |n the Cryptokl API is located. Every function |n the Crvptokl APl must have an entry

Cryptokl I|brary S CK FUNCTION LIST structure If a partlcular function in the Cryptoki API

is not supported by a library, then the function pointer for that function in the library’s
CK_FUNCTION_LIST structure should be-NUYELPTRpoint to a function which simply returns
CKR FUNCTION NOT SUPPORTED.

CK_FUNCTION_LIST PTR

CK_FUNCTION_LIST PTR points to a CK_FUNCTION_LIST. It is implementation-
dependent.

CK_FUNCTION_LIST PTR_PTR

CK_FUNCTION_LIST_PTR_PTR points to a CK_FUNCTION_LIST_PTR. It is
implementation-dependent.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page-47213 Page 47

8. Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data
type. Obijects consist of a set of attributes, each of which has a given value. The following figure
illustrates the high-level hierarchy of the Cryptoki objects and the attributes they support:

Object

Class
Token
Private
Label
Modifiable

Object Type

Data Certificate

. . Key
Application Subject]
Value ID

Value

Figure 88-11, Cryptoki Object Hierarchy

Cryptoki provides functions for creating and destroying objects, and for obtaining and modifying
the values of attributes. Some of the cryptographic functions (e.g., key generation) also create
objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains required
attributes, and the attributes are always consistent with one another, from the time the object is
created. This is in contrast with some object-based paradigms, where an object has no attributes
other than perhaps a class when it is created, and is “uninitialized” for some time. In Cryptoki,
objects are always initialized.

To ensure that the required attributes are defined, the functions that create objects take a
“template” as an argument, where the template specifies initial attribute values. The template can
also provide input to cryptographic functions that create objects (e.g., it can specify a key size).
Cryptographic functions that create objects may also contribute some of the initial attribute values
(see Section 99 for details). In any case, all the attributes supported by an object class that do not
have default values must be specified when an object is created, either in the template, or by the
function.

Tables in this section define attributes in terms of the data type of the attribute value and the
meaning of the attribute, which may include a default initial value. Some of the data types are

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 48214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

defined explicitly by Cryptoki (e.g., CK_OBJECT_CLASS). Attributes may also take the
following types:

Byte array an arbitrary string (array) of CK_BYTEs

Big integer a string of CK_BYTEs representing an unsigned integer of
arbitrary size, most-significant byte first (e.g., the integer
32768 is represented as the 2-byte string 0x80 0x00)

Local string a string of CK_CHARSs (see Table 44-33Fable-4-3)

A token can hold several identical objects, i.e., it is permissible for two or more objects to have
exactly the same values for all their attributes.

With the exception of RSA private key objects (see Section 8.6.18), each type of object possesses a
completely well-defined set of attributes. For example, an X.509 certificate (see Section 8.3.18:3:1)
has precisely the following attributes: CKA_CLASS, CKA _TOKEN, CKA_PRIVATE,
CKA_MODIFIABLE, CKA_LABEL, CKA_CERTIFICATE_TYPE, CKA_SUBJECT, CKA_ID,
CKA_ISSUER, CKA_SERIAL_NUMBER, CKA_VALUE. Some of these attributes possess
default values, and need not be specified when creating an object; some of these default values
may even be the empty string (“”). Nonetheless, the object possesses these attributes.

8.1 Common attributes
The following table defines the attributes common to all objects:

Table 88-11, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS! CK_OBJECT_CLASS | Object class (type)

CKA _TOKEN CK_BBOOL TRUE if object is a token object; FALSE if object is
a session object (default FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object is a private object; FALSE if object
is a public object (default FALSE)

CKA_MODIFIABLE | CK _BBOOL TRUE if object can be modified (default TRUE)

CKA_LABEL Local string Description of the object (default empty)

IMust be specified when object is created

Only the CKA_LABEL attribute can be modified after the object is created. (The CKA_TOKEN,
CKA _PRIVATE, and CKA_MODIFIABLE attributes can be changed in the process of copying
an object.)

Cryptoki v2.0 supports the following values for CKA_CLASS (i.e., the following classes (types) of
objects): CKO_DATA, CKO_CERTIFICATE, CKO_PUBLIC_KEY, CKO_PRIVATE_KEY, and
CKO_SECRET_KEY.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user has
been authenticated to the token.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page-49213 Page 49

The value of the CKA_MODIFIABLE attribute determines whether or not an object is read-only.
It may or may not be the case that an unmodifiable object can be deleted.

The CKA_LABEL attribute is intended to assist users in browsing.
Additional attributes for each object type are described in the following sections. Note that only

attributes visible to applications using Cryptoki are listed. Objects may well carry other useful
information on a token which is not visible to the application via Cryptoki.

8.2 Data objects

Data objects (object class CKO_DATA) hold information defined by an application. Other than
providing access to a data objects, Cryptoki does not attach any special meaning to a data object.
The following table lists the attributes supported by data objects, in addition to the common

attributes listed in Table 88-11Fable-8-1:

Table 88-22, Data Object Attributes

Attribute Data type Meaning

CKA_APPLICATION Local string Description of the application that manages the object
(default empty)

CKA _VALUE Byte array Value of the object (default empty)

BbthOKihegeRRr AT OBy dmibodéf jpcbaidedtae bt ifocrapiptications to indicate ownership of
the objects they manage. Cryptoki does not provide a means of ensuring that only a particular
application has access to a data object, however.

The following is a sample template containing attributes for creating a data object:

CK_CBJECT_CLASS cl ass = CKO _DATA;

CK CHAR |l abel [] = “A data object”;

CK CHAR application[] = “An application”;

CK BYTE data[] = “Sanple data”;

CK BBOOL true = TRUE

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, |abel, sizeof(label)},

{ KA _APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, data, sizeof(data)}

};

8.3 Certificate objects
Certificate objects (object class CKO_CERTIFICATE) hold public-key certificates. Other than
providing access to certificate objects, Cryptoki does not attach any special meaning to

certificates. The following table defines the common certificate object attributes, in addition to the
common attributes listed in Table 88-11Table

—8%

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 50214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 88-33, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE! | CK_CERTIFICATE_TYPE | Type of certificate

IMust be specified when the object is created.

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is created.

8.3.1 X.509 certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 certificates. The following table
defines the X.509 certificate object attributes, in addition to the common attributes listed in Table
88-11Fable-8-1 and Table 88-33Fable-8-3:

Table 88-44, X.509 Certificate Object Attributes

Attribute Data type | Meaning

CKA_SUBJECT!? Byte array | DER encoding of the certificate subject name

CKA_ID Byte array | Key identifier for public/private key pair
(default empty)

CKA_ISSUER Byte array | DER encoding of the certificate issuer name

(default empty)

CKA_SERIAL_NUMBER | Byte array | DER encoding of the certificate serial number
(default empty)

CKA_VALUE! Byte array | BER encoding of the certificate

IMust be specified when the object is created.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified
after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key
pairs held by the same subject (whether stored in the same token or not). (Since the keys are
distinguished by subject name as well as identifier, it is possible that keys for different subjects
may have the same CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a
certificate will be the same as those for the corresponding public and private keys (though it is not
required that all be stored in the same token). However, Cryptoki does not enforce this
association, or even the uniqueness of the key identifier for a given subject; in particular, an
application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS #7
and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions to X.509
certificates, the key identifier may be carried in the certificate. It is intended that the CKA_ID
value be identical to the key identifier in such a certificate extension, although this will not be
enforced by Cryptoki.

The following is a sample template for creating a certificate object:
CK_OBJECT_CLASS cl ass = CKO CERTI FI CATE;

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 51213 Page 51

CK_CERTI FI CATE_TYPE cert Type = CKC_X 509;
CK CHAR l abel [] = “A certificate object”;
CK BYTE subject[] ={...};

CK BYTE id[] = {123};

CK BYTE certificate[] ={...};

CK BBOOL true = TRUE

CK_ATTRI BUTE tenplate[] = {

}s

{CKA CLASS, &class, sizeof(class)},

{ CKA_CERTI FI CATE_TYPE, &certType, sizeof (certType)};
{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_SUBJECT, subject, sizeof(subject)},

{CKA ID, id, sizeof(id)},

{CKA VALUE, certificate, sizeof(certificate)}

8.4 Key objects

The following figure illustrates the details of key objects:

Key
KeyType
ID
Start
End Date
Derive
Local
| |
Public Key Private Key Secret Key
Subject Subject Sensitive
Encrypt Sensitive Encrypt
Verify Decrypt Decrypt
Verify Recover Sign Sign
Wrap Sign Recover Verify
Unwrap Wrap
Extractable Unwrap
Always Sensitive Extractable
Never Extractable Always Sensitive
Never Extractable

Figure 88-22, Key Object Detail

Key objects hold encryption or authentication keys, which can be public keys, private keys, or
secret keys. The following common footnotes apply to all the tables describing attributes of keys:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 52214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 88-55, Common footnotes for key attribute tables

1 Must be specified when object is created.

2 Must not be specified when object is created.

3 Must be specified when object is generated.

4 Must not be speficied when object is generated.

5 Must be specified when object is unwrapped.

6 Must not be specified when object is unwrapped.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created.

9 Default is up to the token. The application can specify an explicit value in the template, and
Cryptoki will reject it if it cannot be supported by the library or token.

The following table defines the attributes common to public key, private key and secret key
classes, in addition to the common attributes listed in Table 88-11Fable-8-1:

Table 88-66, Common Key Attributes

Attribute Data Type Meaning

CKA_KEY_TYPE135 | CK_KEY_TYPE | Type of key

CKA_ID? Byte array Key identifier for key (default empty)

CKA_START DATE® | CK_DATE Start date for the key (default empty)

CKA_END_DATES CK_DATE End date for the key (default empty)

CKA_DERIVES CK_BBOOL TRUE if key supports key derivation (default
FALSE)

CKA_LOCAL?246 CK_BBOOL TRUE if key was generated locally (i.e., on token)

The CKA_ID field is intended to distinguish among multiple keys. In the case of public and
private keys, this is for multiple keys held by the same subject; the key identifier for a public key
and its corresponding private key should be the same. The key identifier should also be the same
as for the corresponding certificate. Cryptoki does not enforce this association, however. (See

Section 8.3Certificate-objects for further commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.
Note that the CKA_START _DATE and CKA_END_DATE attributes are for reference only;

Cryptoki does not attach any special meaning to them. In particular, it does not restrict usage of a
key according to the dates; doing this is up to the application.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 53213 Page 53

The CKA_DERIVE attribute has the value TRUE if and only if it is possible to derive other keys
from the key.

8.5 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This version of Cryptoki
recognizes six types of public keys: RSA, DSA, ECDSA, Diffie-Hellman, KEA, and MAYFLY.
The following table defines the attributes common to all public keys, in addition to the common
attributes listed in Table 88-11Fable-8-1 and Table 88-66Fable-8-6:

Table 88-7#, Common Public Key Attributes

Attribute Data type Meaning

CKA_SUBJECTS Byte array DER encoding of the key subject name (default
empty)

CKA_ENCRYPT? CK_BBOOL TRUE if key supports encryption®

CKA_VERIFY® CK_BBOOL TRUE if key supports verification 9

CKA_VERIFY_RECOVER® | CK_BBOOL TRUE if key supports verification where the
data is recovered from the signature °

CKA_WRAPS CK_BBOOL TRUE if key supports wrapping?®

It is intended in the interests of interoperability that the subject name and key identifier for a
public key will be the same as those for the corresponding certificate and private key. However,
Cryptoki does not enforce this, and it is not required that the certificate and private key also be
stored on the token.

8.5.1 RSA public key objects
RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold RSA public
keys. The following table defines the RSA public key object attributes, in addition to the common

attributes listed in Table 88-11Table-8-1, Table 88-66Table-8-8, and Table 88-77Table 8-7:

Table 88-88, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS46 Big integer Modulus n
CKA_MODULUS BITS236 CK_ULONG | Length in bits of modulus n
CKA _PUBLIC_EXPONENT 36 | Big integer Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS #1 for
more information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO PUBLI C KEY;
CK_KEY_TYPE keyType = CKK RSA
CK CHAR |l abel [] = “An RSA public key object”;

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 54214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK BYTE nodul us[] ={...};
CK _BYTE exponent[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {

}s

{CKA CLASS, &class, sizeof(class)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{CKA WRAP, &true, sizeof(true)},

{ CKA_ENCRYPT, &t rue, sizeof(true)},

{CKA_ MDULUS, nodul us, si zeof (rmodul us) },

{ KA _PUBLI C_EXPONENT, exponent, sizeof (exponent)}

8.5.2 DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold DSA public
keys. The following table defines the DSA public key object attributes, in addition to the common
attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-77Fable-8-7:

Table 88-99, DSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME!36 Big integer Subprime q (160 bits)

CKA_BASE136 Big integer Base g

CKA _VALUE46 Big integer Public value y

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA
parameters”. See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_CBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK _DSA;

CK CHAR | abel [] = “A DSA public key object”;
CK BYTE prime[] ={...};

CK BYTE subprime[] ={...};

CK BYTE base[] ={...};

CK BYTE value[] ={...};

CK BBOOL true = TRUE

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{CKA PRI ME, prine, sizeof(prime)},

{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},

{CKA VALUE, val ue, sizeof(value)}

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 55213 Page 55

8.5.3 ECDSA public key objects

ECDSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_ECDSA) hold
ECDSA public keys. The following table defines the ECDSA public key object attributes, in
addition to the common attributes listed in Table 88-11Fable-8-1Table 88-66Fable-8-6, and Table
88-77Fable-8-7:

Table 88-1018, ECDSA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME136 Big integer Subprime q (160 bits)

CKA_BASE!36 Big integer Base g (512 to 1024 bits, in steps of 64 bits)
CKA _VALUE46 Big integer Public value W

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the
“ECDSA parameters”.

The following is a sample template for creating an ECDSA public key object:

CK_CBJECT_CLASS cl ass = CKO _PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;
CK CHAR | abel [] = “An ECDSA public key object”;
CK BYTE prime[] ={...};
CK BYTE subprime[] ={...};
CK BYTE base[] ={...};
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, |abel, sizeof(label)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}
H

8.5.4 Diffie-Hellman public key objects

Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type CKK_DH) hold
Diffie-Hellman public keys. The following table defines the RSA public key object attributes, in
addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table
88-77Fable-8-7:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 56214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2 |

Table 88-1111, Diffie-Hellman Public Key Object Attributes ‘

Attribute Data type Meaning
CKA_PRIMEL36 Big integer Prime p
CKA_BASE!36 Big integer Base g

CKA _VALUE46 Big integer Public value y

The CKA _PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman
parameters”. Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_CBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK DH

CK CHAR l abel [] = “A Diffie-Hell man public key object”;
CK BYTE prime[] ={...};

CK BYTE base[] ={...};

CK BYTE value[] ={...};

CK BBOOL true = TRUE

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, |abel, sizeof(label)},

{CKA PRI ME, prine, sizeof(prime)},

{ KA BASE, base, sizeof (base)},

{CKA VALUE, val ue, sizeof (value)}

H

8.5.5 KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold KEA public
keys. The following table defines the KEA public key object attributes, in addition to the common
attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-77Fable8-7:

Table 88-1212, KEA Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME!36 Big integer Subprime q (160 bits)

CKA_BASE!36 Big integer Base g (512 to 1024 bits, in steps of 64 bits)
CKA _VALUE46 Big integer Public value y

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA
parameters”.

The following is a sample template for creating a KEA public key object:

CK_CBJECT_CLASS cl ass = CKO PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_KEA

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBJECTSMECHANISMS

CK_CHAR | abel []
CK _BYTE pri e[]

CK_BYTE subpri e[]

“A KEA public key object”;

{...}h

OK_BYTE base[] = zi}
CK BYTE value[] ={...};

K BBOCOL true = TRUE
CK_ATTR BUTE tenplate[] = {

{CKA_CLASS, &cl ass,

{ CKA_KEY_TYPE,

{ KA TOKEN, &t rue, sizeof (true)},
{CKA LABEL, | abel,
{CKA PRI ME, prine,

{ CKA_SUBPRI ME,

{ KA BASE, base,
{ KA _VALLE, val ue,

}s

si zeof (cl ass) },

&keyType, sizeof (keyType)},

si zeof (1 abel)},
si zeof (prine)},

subpri me, sizeof (subprime)},

8.5.6 MAYFLY public key objects

si zeof (base) },
si zeof (val ue) }

MAYFLY public key objects (object class CKO_PUBLIC_KEY, key type CKK_MAYFLY) hold
MAYFLY public keys. The following table defines the MAYFLY public key object attributes, in
addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table

88-77Fable-8-7:

Table 88-1313, MAYFLY Public Key Object Attributes

Attribute Data type Meaning

CKA_PRIME36 Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME!36 Big integer Subprime q (160 bits)

CKA_BASE!36 Big integer Base g (512 to 1024 bits, in steps of 64 bits)
CKA _VALUE46 Big integer Public value W

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the

“MAYFLY parameters”.

The following is a sample template for creating a MAYFLY public key object:
CK_CBJECT_CLASS cl ass = CKO PUBLI C KEY;

CK_KEY_TYPE keyType = CKK_MNAYFLY;

OK_CHAR l abel [] = “A MAYFLY public key object”;
CK BYTE prime[] ={...};

CK_BYTE subpri e[]

CK _BYTE base[] =

CK _BYTE val ue[] =

{...}h
}

{::-};

K BBOCOL true = TRUE
CK_ATTR BUTE tenplate[] = {

{CKA_CLASS, &cl ass,

{ CKA_KEY_TYPE,

si zeof (cl ass) },

&keyType, sizeof (keyType)},

{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}
H

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 58214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

8.6 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This version of
Cryptoki recognizes six types of private key: RSA, DSA, ECDSA, Diffie-Hellman, KEA, and
MAYFLY. The following table defines the attributes common to all private keys, in addition to the
common attributes listed in Table 88-11Fable-8-1 and Table 88-66Fable-8-6:

Table 88-1414, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECTS Byte array DER encoding of certificate subject name
(default empty)

CKA_SENSITIVES® CK_BBOOL | TRUE if key is sensitive®

CKA_DECRYPTS® CK_BBOOL | TRUE if key supports decryption®

CKA _SIGNs# CK_BBOOL | TRUE if key supports signatures where
the signature is an appendix to the data®

CKA_SIGN_RECOVER? CK_BBOOL | TRUE if key supports signatures where
the data can be recovered from the
signature?®

CKA_UNWRAPS CK_BBOOL | TRUE if key supports unwrapping®

CKA_EXTRACTABLE? CK_BBOOL | TRUE if key is extractable®

CKA_ALWAYS_SENSITIVE 246 CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set to TRUE

CKA_NEVER_EXTRACTABLE 246 | CK_BBOOL | TRUE if key has never had the
CKA_EXTRACTABLE attribute set to
TRUE

After an object is created, the CKA_SENSITIVE attribute may only be set to TRUE. Similarly,
after an object is created, the CKA_EXTRACTABLE attribute may only be set to FALSE.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute is false, then
certain attributes of the private key cannot be revealed off the token. Which attributes these are is
specified for each type of private key in the attribute table in the section describing that type of
key.

If the CKA_EXTRACTABLE attribute is false, then the key cannot be wrapped.

It is intended in the interests of interoperability that the subject name and key identifier for a
private key will be the same as those for the corresponding certificate and public key. However,
this is not enforced by Cryptoki, and it is not required that the certificate and public key also be
stored on the token.

8.6.1 RSA private key objects
RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold RSA
private keys. The following table defines the RSA private key object attributes, in addition to the

common attributes listed in Table 88-11Fable 8-1, Table 88-66Table-8-6, and Table 88-1414Table-8-
14:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBJECTSMECHANISMS

Table 88-1515, RSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_MODULUS46 Big integer | Modulus n
CKA_PUBLIC_EXPONENT 46 Big integer | Public exponent e
CKA_PRIVATE_EXPONENT 467 | Big integer | Private exponent d
CKA_PRIME_1467 Big integer | Prime p

CKA_PRIME_2467 Big integer | Prime q
CKA_EXPONENT_1467 Big integer | Private exponent d modulo p-1
CKA_EXPONENT_2467 Big integer | Private exponent d modulo g-1
CKA_COEFFICIENT467 Big integer | CRT coefficient g1 mod p

Depending on the token, there may be limits on the length of the key components. See PKCS #1

for more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of the above
attributes, which can assist in performing rapid RSA computations. Other tokens might store
only the CKA_MODULUS and CKA_PRIVATE_EXPONENT values.

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a token
generates an RSA private key, it stores whichever of the fields in Table 88-1515Fable-8-15 it keeps |
track of. Later, if an application asks for the values of the key’s various attributes, Cryptoki
supplies values only for attributes whose values it can obtain (i.e., if Cryptoki is asked for the
value of an attribute it cannot obtain, the request fails). Note that a Cryptoki implementation may
or may not be able and/or willing to supply various attributes of RSA private keys which are not
E.g., if a particular token stores values only for the
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and CKA_PRIME_2 attributes, then Cryptoki is
certainly able to report values for all the attributes above (since they can all be computed from
these three values). However, a Cryptoki implementation may or may not actually do this extra
computation. The only attributes from Table 88-1515Fable-8-15 that a Cryptoki implementation is |
required to be able to return values for are CKA_MODULUS and CKA_PRIVATE_EXPONENT.

actually stored on the token.

If an RSA private key object is created on a token, and more attributes from Table 88-1515Fable-8-
15 are supplied to the object creation call than are supported by the token, the extra attributes are
likely to be thrown away. If an attempt is made to create an RSA private key object on a token
with insufficient attributes for that particular token, then the object creation call fails.

Note that when generating an RSA private key, there is no CKA_MODULUS BITS attribute
specified. This is because RSA private keys are only generated as part of an RSA key pair, and the
CKA_MODULUS_BITS attribute for the pair is specified in the template for the RSA public key.

The following is a sample template for creating an RSA private key object:
CK_OBJECT_CLASS cl ass = CKO_PR VATE_KEY;

CK_KEY_TYPE keyType = CKK_RSA;
CK CHAR | abel [] = “An RSA private key object”;

CK BYTE subject[] ={...}

CK BYTE id[] = {123};

K _BYTE nodul us[] = {...};

CK _BYTE publ i cExponent[]
CK _BYTE pri vat eExponent []

This is a DRAFT document.

={...};
={...};

Copyright © 1994-7 RSA Laboratories

Page 60214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK _BYTE prinel[]
CK _BYTE prine2[]

={)
CK_BYTE exponent 1]

{--h

CK_BYTE exponent 2[} z E %
CK BYTE coefficient[] = {...};

CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ KA _SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TI VE, & rue, sizeof(true)},
{ KA DECRYPT, &t rue, sizeof(true)},
{CKA SI@Q\, &rue, sizeof(true)},
{CKA_ MDULUS, nodul us, si zeof (rmodul us) },
{ CKA_PUBLI C_EXPONENT, publicExponent, sizeof (publicExponent)},
{ CKA_ PR VATE_EXPONENT, privat eExponent, sizeof (privateExponent)},
{CKA PRIME_ 1, prinel, sizeof(primel)},
{CKA PRIME 2, prine2, sizeof(prime2)},
{ KA _EXPONENT_1, exponent1, sizeof (exponentl)},
{ CKA_EXPONENT_2, exponent 2, si zeof (exponent 2)},
{ CKA_CCEFFI O ENT, coefficient, sizeof(coefficient)}

}s

8.6.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_DSA) hold DSA
private keys. The following table defines the DSA private key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-1414Fable-8-
4.

Table 88-1616, DSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME146 Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME46 Big integer | Subprime q (160 bits)

CKA_BASE146 Big integer | Base g

CKA _VALUE467 Big integer | Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “DSA
parameters”. See FIPS PUB 186 for more information on DSA keys.

Note that when generating a DSA private key, the DSA parameters are not specified in the key’s
template. This is because DSA private keys are only generated as part of a DSA key pair, and the
DSA parameters for the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:
CK_OBJECT_CLASS cl ass = CKO PR VATE_KEY;
CK_KEY_TYPE keyType = CKK _DSA;
CK CHAR |l abel [] = “A DSA private key object”;
CK BYTE subject[] ={...};

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 61213 Page 61

CK BYTE id[] = {123};

CK BYTE prime[] ={...};

CK BYTE subprime[] ={...};

CK BYTE base[] ={...};

CK BYTE value[] ={...};

CK BBOOL true = TRUE

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ KA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, & rue, sizeof(true)},
{CKA SI@Q\, &rue, sizeof(true)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

H

8.6.3 ECDSA private key objects

ECDSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_ECDSA) hold
ECDSA private keys. The following table defines the ECDSA private key object attributes, in
addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table
88-1414Table-8-14:

Table 88-1717, ECDSA Private Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME146 Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME46 Big integer | Subprime q (160 bits)

CKA_BASE146 Big integer | Base g (512 to 1024 bits, in steps of 64 bits)
CKA _VALUE467 Big integer | Private value w

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the
“ECDSA parameters”.

Note that when generating an ECDSA private key, the ECDSA parameters are not specified in the
key’s template. This is because ECDSA private keys are only generated as part of an ECDSA key
pair, and the ECDSA parameters for the pair are specified in the template for the ECDSA public
key.

The following is a sample template for creating an ECDSA private key object:

CK_OBJECT_CLASS cl ass = CKO PR VATE_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA

CK CHAR | abel [] = “An ECDSA private key object”;
CK BYTE subject[] ={...};

CK BYTE id[] = {123};

CK BYTE prime[] ={...};

CK BYTE subprime[] ={...};

CK BYTE base[] ={...};

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 62214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ KA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, |abel, sizeof(label)},
{ KA _SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, & rue, sizeof(true)},
{CKA DERI VE, & rue, sizeof(true)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof (value)}
H

8.6.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO_PRIVATE_KEY, key type CKK_DH) hold
Diffie-Hellman private keys. The following table defines the Diffie-Hellman private key object
attributes, in addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable 8-
6, and Table 88-1414Fable-8-14:

Table 88-1818, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME146 Big integer Prime p

CKA _BASE!46 Big integer Base g

CKA_VALUE?467 Big integer Private value x

CKA_VALUE BITS26 | CK_ULONG Length in bits of private value x

The CKA _PRIME and CKA_BASE attribute values are collectively the “Diffie-Hellman
parameters”. Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters are not
specified in the key’s template. This is because Diffie-Hellman private keys are only generated as
part of a Diffie-Hellman key pair, and the Diffie-Hellman parameters for the pair are specified in
the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO PR VATE_KEY;

CK_KEY_TYPE keyType = CKK DH

CK CHAR |l abel [] = “A D ffie-Hell man private key object”;
CK BYTE subject[] ={...};

CK BYTE id[] = {123};

CK BYTE prime[] ={...};
{

CK _BYTE base[] =
CK _BYTE val ue[] =
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBJECTSMECHANISMS

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, & rue, sizeof(true)},
{CKA DERI VE, & rue, sizeof(true)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}
H

8.6.5 KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA) hold KEA
private keys. The following table defines the KEA private key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66TFable-8-6, and Table 88-1414Fable-8-

14:

Table 88-1919, KEA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME146 Big integer Prime p (512 to 1024 bits, in steps of 64
bits)

CKA_SUBPRIME46 | Big integer Subprime q (160 bits)

CKA_BASE146 Big integer Base g (512 to 1024 bits, in steps of 64 bits)

CKA _VALUE467 Big integer Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the “KEA

parameters”.

Note that when generating a KEA private key, the KEA parameters are not specified in the key’s
template. This is because KEA private keys are only generated as part of a KEA key pair, and the

KEA parameters for the pair are specified in the template for the KEA public key.

The following is a sample template for creating a KEA private key object:

CK_CBJECT_CLASS cl ass = CKO PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_KEA
CK CHAR |l abel [] = “A KEA private key object”;
CK BYTE subject[] ={...};
CK BYTE id[] = {123};
CK BYTE prime[] ={...};
CK BYTE subprime[] ={...};
CK BYTE base[] ={...};
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, |abel, sizeof(label)},

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 64214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, &rue, sizeof(true)},
{CKA DERI VE, & rue, sizeof(true)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}
H

8.6.6 MAYFLY private key objects

MAYFLY private key objects (object class CKO_PRIVATE_KEY, key type CKK_MAYFLY) hold
MAYFLY private keys. The following table defines the MAYFLY private key object attributes, in
addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table
88-1414Table-8-14:

Table 88-20208, MAYFLY Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME146 Big integer Prime p (512 to 1024 bits, in steps of 64
bits)

CKA_SUBPRIME46 | Big integer Subprime q (160 bits)

CKA_BASE146 Big integer Base g (512 to 1024 bits, in steps of 64 bits)

CKA _VALUE!467 Big integer Private value w

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are collectively the
“MAYFLY parameters”.

Note that when generating a MAYFLY private key, the MAYFLY parameters are not specified in
the key’s template. This is because MAYFLY private keys are only generated as part of a
MAYFLY key pair, and the MAYFLY parameters for the pair are specified in the template for the
MAYFLY public key.

The following is a sample template for creating a MAYFLY private key object:

CK_CBJECT_CLASS cl ass = CKO PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_MNAYFLY;
CK CHAR | abel [T = “A MAYFLY private key object”;
CK BYTE subject[] ={...};
CK BYTE id[] = {123};
CK BYTE prime[] ={...};
CK BYTE subprime[] ={...};
CK BYTE base[] ={...};
CK BYTE val ue[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 65213 Page 65

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, & rue, sizeof(true)},
{CKA DERI VE, & rue, sizeof(true)},
{CKA PRI ME, prine, sizeof(prime)},
{ KA _SUBPRI ME, subprine, sizeof (subprine)},
{ KA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof (value)}
H

8.7 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This version of Cryptoki
recognizes the following types of secret key: generic, RC2, RC4, RC5, DES, DES2, DES3, CAST,
CAST3, CASTS5, IDEA, SKIPJACK, BATON, JUNIPER, and CDMF. The following table defines
the attributes common to all secret keys, in addition to the common attributes listed in Table 88-
11Fable-8-1 and Table 88-66Fable-8-6:

Table 88-2121, Common Secret Key Attributes

Attribute Data type Meaning

CKA_SENSITIVES® CK_BBOOL | TRUE if object is sensitive (default FALSE)
CKA_ENCRYPT? CK _BBOOL | TRUE if key supports encryption?
CKA_DECRYPTS® CK_BBOOL | TRUE if key supports decryption®

CKA _SIGNs# CK_BBOOL | TRUE if key supports signatures (i.e.,

authentication codes) where the signature
is an appendix to the data®

CKA_VERIFY® CK_BBOOL | TRUE if key supports verification (i.e., of
authentication codes) where the signature
is an appendix to the data®

CKA_WRAPS CK _BBOOL | TRUE if key supports wrapping®
CKA_UNWRAPS CK_BBOOL | TRUE if key supports unwrapping?
CKA _EXTRACTABLES? CK BBOOL | TRUE if key is extractable®

CKA_ALWAYS_SENSITIVE 246 CK_BBOOL | TRUE if key has always had the
CKA_SENSITIVE attribute set to TRUE

CKA_NEVER_EXTRACTABLE 246 | CK_BBOOL | TRUE if key has never had the
CKA_EXTRACTABLE attribute set to
TRUE

After an object is created, the CKA_SENSITIVE attribute may only be set to TRUE. Similarly,
after an object is created, the CKA_EXTRACTABLE attribute may only be set to FALSE.

If the CKA_SENSITIVE attribute is TRUE, or if the CKA_EXTRACTABLE attribute is false, then
certain attributes of the private key cannot be revealed in plaintext outside the token. These
attributes are specified for each type of private key in the attribute table in the section describing
that type of key.

If the CKA_EXTRACTABLE attribute is false, then the key cannot be wrapped.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 66214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

8.7.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type CKK_GENERIC_SECRET)
hold generic secret keys. These keys do not support encryption, decryption, signatures or
verification; however, other keys can be derived from them. The following table defines the
generic secret key object attributes, in addition to the common attributes listed in Table 88-
11Fable-8-1, Table 88-66Fable-8-6, and Table 88-2121Fable-8-2%:

Table 88-2222, Generic Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (arbitrary length)
CKA VALUE _LEN238 | CK_ULONG Length in bytes of key value

The following is a sample template for creating a generic secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENER C_SECRET;
CK CHAR |l abel [] = “A generic secret key object”;
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, |abel, sizeof(label)},
{CKA DERI VE, &rue, sizeof(true)},
{CKA VALUE, val ue, sizeof (value)}

};

8.7.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold RC2 keys.
The following table defines the RC2 secret key object attributes, in addition to the common
attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-2121Fable-8-21:

Table 88-2323, RC2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (1 to 128 bytes)
CKA VALUE _LEN238 | CK_ULONG Length in bytes of key value

The following is a sample template for creating an RC2 secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK RC2;
CK CHAR |l abel [] = “An RC2 secret key object”;
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 67213 Page 67

{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ KA _ENCRYPT, &t rue, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

};

8.7.3 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold RC4 keys.
The following table defines the RC4 secret key object attributes, in addition to the common
attributes listed in Table 88-11Fable-8-1, Table 88-66TFable-8-6, and Table 88-2121Fable-8-21:

Table 88-2424, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (1 to 256 bytes)
CKA VALUE _LEN238 | CK_ULONG Length in bytes of key value

The following is a sample template for creating an RC4 secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK Rt4;
CK CHAR |l abel [] = “An R4 secret key object”;
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ KA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, |abel, sizeof(label)},
{CKA_ENCRYPT, &t rue, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

};

8.7.4 RCS5 secret key objects

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold RC5 keys.
The following table defines the RC5 secret key object attributes, in addition to the common
attributes listed in Table 88-11Fable-8-1, Table 88-66TFable-8-6, and Table 88-2121Fable-8-21:

Table 88-2525, RC4 Secret Key Object

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (0 to 255 bytes)
CKA VALUE _LEN238 | CK_ULONG Length in bytes of key value

The following is a sample template for creating an RC5 secret key object:
CK_CBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK RC5;
CK CHAR |l abel [] = “An RC5 secret key object”;
CK BYTE value[] ={...};

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 68214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

K

oK

}s

BBOOL true = TRUE

ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},
{ KA TOKEN, &t rue, sizeof(true)},

{CKA LABEL, |abel, sizeof(label)},
{CKA_ENCRYPT, &t rue, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

8.7.5 DES secret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold single-length
DES keys. The following table defines the DES secret key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-2121Fable-8-

2%

Table 88-2626, DES Secret Key Object

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (always 8 bytes long)

DES keys must always have their parity bits properly set, as described in FIPS PUB 46-2.

Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

CK_BJECT_CLASS cl ass = CKO SECRET_KEY;
OK_KEY_TYPE keyType = CKK DES;

OK_CHAR | abel [] = “A DES secret key object”;
OK_BYTE val ue[8] = {...};

OK BBOOL true = TRUE

OK_ATTR BUTE tenplate[] = {

“{OKA CLASS, &class, si zeof (cl ass)},

{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ KA TOKEN, &t rue, sizeof (true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true si zeof (true)},

{CKA VALUE, val ue, sizeof (val ue)}

—

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page 69213 Page 69

8.7.6 DES?2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold double-
length DES keys. The following table defines the DES2 secret key object attributes, in addition to
the common attributes listed in Table 88-11Fable—8-1, Table 88-66Fable—8-6, and Table 88-
2121Fable-8-2%:

Table 88-2727, DES2 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (always 16 bytes long)

DES2 keys must always have their parity bits properly set, as described in FIPS PUB 46-2 (i.e.,
each of the DES keys comprising a DES2 key must have its parity bits properly set). Attempting
to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_BJECT_CLASS cl ass = CKO SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2;

CK CHAR | abel [] = “A DES2 secret key object”;
CK BYTE val ue[16] ={...};

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, |abel, sizeof(label)},

{ KA ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof (val ue)}

—

8.7.7 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold triple-
length DES keys. The following table defines the DES3 secret key object attributes, in addition to
the common attributes listed in Table 88-11Fable8-1, Table 88-66Fable—8-6, and Table 88-
2121Fable-8-2%:

Table 88-2828, DES3 Secret Key Object Attributes

Attribute Data type Meaning
CKA _VALUE467 Byte array Key value (always 24 bytes long)

DES3 keys must always have their parity bits properly set, as described in FIPS PUB 46-2 (i.e.,
each of the DES keys comprising a DES3 key must have its parity bits properly set). Attempting
to create or unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_CBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK DES3;

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 70214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK CHAR | abel [] = “A DES3 secret key object”;
CK BYTE value[24] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ KA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof(label)},
{ CKA_ENCRYPT, &t rue, sizeof(true)},
{CKA VALUE, val ue, sizeof (value)}

}s

8.7.8 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST) hold CAST
keys. The following table defines the CAST secret key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-2121Fable-8-
2%

Table 88-2929, CAST Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (1 to 8 bytes)
CKA VALUE _LEN236 [CK_ULONG | Length in bytes of key value

The following is a sample template for creating an CAST secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK _CAST;
CK CHAR | abel [] = “A CAST secret key object”;
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page- 71213 Page 71

{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ KA _ENCRYPT, &t rue, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}
H

8.7.9 CAST3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3) hold CAST3
keys. The following table defines the CAST3 secret key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66TFable-8-6, and Table 88-2121Fable-8-
2%

Table 88-3038, CAST3 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (1 to 8 bytes)
CKA VALUE_LEN236 [CK_ULONG | Length in bytes of key value

The following is a sample template for creating an CAST3 secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK CASTS3;
CK_CHAR | abel [] “A CAST3 secret key object”;
CK BYTE value[] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, |abel, sizeof(label)},

{ KA _ENCRYPT, &t rue, sizeof(true)},

{CKA VALUE, val ue, sizeof (value)}

}s

8.7.10 CASTS5 secret key objects

CASTS5 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST5) hold CAST5
keys. The following table defines the CAST5 secret key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-2121Fable-8-
2%

Table 88-3131, CASTS5 Secret Key Object Attributes

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (1 to 16 bytes)
CKA VALUE _LEN236 [CK_ULONG | Length in bytes of key value

The following is a sample template for creating an CASTS5 secret key object:
CK_CBJECT_CLASS cl ass = CKO _SECRET_KEY;

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 72214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_KEY_TYPE keyType = CKK_CAST5;

CK_CHAR | abel []
CK _BYTE val ue[]

CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] =

{CKA_CLASS, &cl ass,
{CKA KEY_TYPE, &keyType,

= “A CAST5 secret key object”;
={...};

si zeof (cl ass) },
si zeof (keyType) },

{ KA TOKEN, &t rue, sizeof (true)},
{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &t r ue,
{ KA _VALLE, val ue,

}s

8.7.11 IDEA secret key objects

si zeof (true)},
si zeof (val ue) }

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA) hold IDEA
keys. The following table defines the IDEA secret key object attributes, in addition to the
common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and Table 88-2121Fable-8-

2%

Table 88-3232, IDEA Secret Key Obiject

Attribute

Data type

Meaning

CKA_VALUE467

Byte array

Key value (always 16 bytes long)

The following is a sample template for creating an IDEA secret key object:

CK_BJECT_CLASS cl ass = CKO SECRET_KEY;

CK_KEY_TYPE keyType = CKK_| DEA

CK CHAR | abel []
CK _BYTE val ue[16]
BBOCOL true
ATTR BUTE tenpl ate[] =
si zeof (cl ass) },

K
K

{CKA CLASS, &l ass,
{CKA KEY_TYPE, &keyType, sizeof (keyType)},

“An | DEA secret key object”;

={...};
TRUE;

{ KA TOKEN, &t rue, sizeof (true)},
{CKA LABEL, | abel, sizeof(label)},

{ KA ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof (val ue)}

};

Copyright © 1994-7 RSA Laboratories

This is a DRAFT document.

OBJECTSOBIECTSMECHANISMS Page- 73213 Page 73

8.7.12 CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF) hold single-
length CDMF keys. The following table defines the CDMF secret key object attributes, in addition
to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable—8-6, and Table 88-
2121Fable-8-2%:

Table 88-3333, CDMF Secret Key Object

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (always 8 bytes long)

CDMF keys must always have their parity bits properly set in exactly the same fashion described
for DES keys in FIPS PUB 46-2. Attempting to create or unwrap a CDMF key with incorrect
parity will return an error.

The following is a sample template for creating a CDMF secret key object:

CK_OBJECT_CLASS cl ass = CKO SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDVF;

CK CHAR | abel [] = “A CDMF secret key object”;
CK BYTE value[8] ={...};

CK BBOOL true = TRUE;

CK ATTRI BUTE tenplate[] = {

{CKA CLASS, &class, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)},

{ KA ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof (value)}

—

8.7.13 SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET_KEY, key type CKK_SKIPJACK) holds
a single-length MEK or a TEK. The following table defines the SKIPJACK secret key object
attributes, in addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fahle 8-
6, and Table 88-2121Fable 8-2%:

Table 88-3434, SKIPJACK Secret Key Object

Attribute Data type Meaning
CKA _VALUE467 Byte array Key value (always 10 bytes long)

The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_SKI PIACK;

CK CHAR | abel [T = “A SKI PJACK MEK secret key object”;
CK BYTE value[12] ={...};

CK BBOOL true = TRUE

CK_ATTRI BUTE tenplate[] = {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 74214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

{CKA CLASS, &class, sizeof(class)},

{ OKA_KEY_TYPE, &keyType, sizeof (keyType)},
{ KA TOKEN, &t rue, sizeof (true)},

{CKA LABEL, |abel, sizeof(label)},

{ CKA_ENCRYPT, &true si zeof (true)},

{CKA VALUE, val ue, sizeof (value)}

}s

The following is a sample template for creating a SKIPJACK TEK secret key object:

CK_CBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKI PIACK;
CK CHAR | abel [] = “A SKIPJACK TEK secret key object”;
CK BYTE value[12] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ OKA_KEY_TYPE, &keyType, sizeof (keyType)},
{ KA TOKEN, &t rue, sizeof (true)},
{CKA LABEL, |abel, sizeof(label)},
{ CKA_ENCRYPT, &true, si zeof (true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof (value)}

}s

8.7.14 BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type CKK_BATON) hold
single-length BATON keys. The following table defines the BATON secret key object attributes,
in addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable-8-6, and
Table 88-2121Fable-8-21:

Table 88-3535, BATON Secret Key Object

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (always 20 bytes long)

The following is a sample template for creating a BATON MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO SECRET_KEY;
OK_KEY_TYPE keyType = CKK __BATON,

OK_ CHAR | abel [] = “A BATON MEK secret key object”;
OK BYTE val ue[12] = {...};

OK BBOOL true = TRUE

OK_ATTR BUTE tenplate[] = {

“{OKA CLASS, &class, si zeof (cl ass)},

{ KA _KEY_TYPE, &keyType si zeof (keyType) },
{ KA TOKEN, &t rue, sizeof (true)},

{ CKA_LABEL, |abel, sizeof(label)},

{ CKA_ENCRYPT, &true si zeof (true)},

{CKA VALUE, val ue, sizeof (val ue)}

—

The following is a sample template for creating a BATON TEK secret key object;
CK_BJECT_CLASS cl ass = CKO SECRET_KEY;

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

OBJECTSOBJECTSMECHANISMS

CK_KEY_TYPE keyType = CKK_BATON
CK CHAR | abel [] = “A BATON TEK secret key object”;
CK BYTE value[12] ={...};
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &class, sizeof(class)},
{ OKA_KEY_TYPE, &keyType, sizeof (keyType)},
{ KA TOKEN, &t rue, sizeof (true)},
{CKA LABEL, |abel, sizeof(label)},
{ CKA_ENCRYPT, &true, si zeof (true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof (value)}

8.7.15 JUNIPER secret key objects

JUNIPER secret key objects (object class CKO_SECRET _KEY, key type CKK_JUNIPER) hold
single-length JUNIPER keys. The following table defines the JUNIPER secret key object
attributes, in addition to the common attributes listed in Table 88-11Fable-8-1, Table 88-66Fable 8-

8, Table 88-2121Fable-8-21:

Table 88-3636, JUNIPER Secret Key Object

Attribute Data type Meaning
CKA_VALUE?467 Byte array Key value (always 20 bytes long)

The following is a sample template for creating a JUNIPER MEK secret key object:

CK_BJECT_CLASS cl ass = CKO SECRET_KEY;
OK_KEY_TYPE keyType = CKK_JW PER
OK CHAR l abel [] = “A JUN PER MEK secret key object”;
OK_BYTE val ue[12] = {...};
OK BBOOL true = TRUE
OK_ATTR BUTE tenplate[] = {
“{OKA CLASS, &class, si zeof (cl ass)},
{ KA KEY_TYPE, &keyType si zeof (keyType) },
{ KA TOKEN, &t rue, sizeof (true)},
{CKA LABEL, |abel, sizeof(label)},
{ CKA_ENCRYPT, &true, si zeof (true)},
{CKA VALUE, val ue, sizeof (val ue)}

—

The following is a sample template for creating a JUNIPER TEK secret key object:

CK_BJECT_CLASS cl ass = CKO SECRET_KEY;
OK_KEY_TYPE keyType = CKK_JWN PER

OK_ CHAR l abel [] = “A JUN PER TEK secret key object”;
OK BYTE val ue[12] = {...};

OK BBOOL true = TRUE

OK_ATTR BUTE tenplate[] = {

“{OKA CLASS, &class, si zeof (cl ass)},

{ CKA_KEY_TYPE, &keyType si zeof (keyType) },
{ KA TOKEN, &t rue, sizeof (true)},

{CKA LABEL, | abel, sizeof(label)},

{ CKA_ENCRYPT, &true, si zeof (true)},

{CKA WRAP, &true, sizeof(true)},

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 76214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

{CKA VALUE, val ue, sizeof (value)}
H

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page 77213 Page 77

9. Functions

Cryptoki's functions are organized into the following categories:
general-purpose functions (4 functions)
slot and token management functions (8 functions)
session management functions (8 functions)
object management functions (9 functions)
encryption functions (4 functions)
decryption functions (4 functions)
message digesting functions (5 functions)
signing and MACing functions (6 functions)
functions for verifying signatures and MACs (6 functions)
dual-purpose cryptographic functions (4 functions)
key management functions (5 functions)
random number generation functions (2 functions)
parallel function management functions (2 functions)

In addition to these 67 functions in the Cryptoki v2.0 APl proper, Cryptoki makes use of
application-supplied callback functions to notify an application of certain events.

A Cryptoki library need not support every function in the Cryptoki API. However, even an
unsupported function should have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. H-aCryptoki-ARHunctionis-unsupported-itspointerThe
function’s entry in the library’s CK _FUNCTION_LIST structure (as obtained by
C_GetFunctionList) should point to this stub shewtld-be-NULLPFRfunction (see Section 7.676).

9.1 Function return values

9.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 78214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst
case, it is possible that the function only partially succeeded, and that the computer and/or
token is in an inconsistent state.

CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient
memory to perform the requested function. In the worst case, it is possible that the function
only partially succeeded, and that the computer and/or token is in an inconsistent state.

CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed
information about why not is not available in this error return. If the failed function uses a
session, it is possible that the CK_SESSION_INFO that can be obtained by calling
C_GetSessionInfo holds useful information about what happened in its ulDeviceError field.
In any event, although the function call failed, the situation is not necessarily totally hopeless,
as it is likely to be when CKR_GENERAL_ERROR is returned.

CKR_OK: The function executed successfully.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error return, then
CKR_GENERAL_ERROR should be returned.

Because the above values can be returned by any Cryptoki function, they will never explicitly be
mentioned as possible returns when the Cryptoki functions are described. All other return values
are more specific to particular functions, and will be listed with all relevant functions.

9.1.2 Cryptoki function return values for functions that use a session handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki
function except for C_lInitialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, C_GetTokenlInfo, C_GetMechanismList, C_GetMechanisminfo, C_InitToken,
C_OpenSession, and C_CloseAllSessions) can return the following values:

CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that
the function was invoked. Note that this can happen if the session’s token is removed before the
function invokcation, since removing a token closes all sessions with it.

CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the
function.

CKR_SESSION_CLOSED: The session was closed during the execution of the function.
The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an appropriate
error return, then CKR_SESSION_HANDLE_INVALID should be returned.
In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a

distinction between a token being removed before a function invokation and a token being
removed during a function execution.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-79213 Page 79

9.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a token (i.e., any Cryptoki function except for C_Initialize,
C_Finalize, C_GetIinfo, C_GetFunctionList, C_GetSlotList, or C_GetSlotInfo) can return any of
the following values:

CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the
requested function.

CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot.

CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time that the
function was invoked.

CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the
function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error return, then
CKR_DEVICE_MEMORY should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invokation and a token being
removed during a function execution.

9.1.4 All the other Cryptoki function return values

The other Cryptoki function returns follow. Except as mentioned in the descriptions of particular
error codes, there are in general no particular priorities among the errors listed below, i.e., if more
than one error code might apply to a function’s execution, the function may return any applicable
error code.

CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an attribute which
may not be set, or which may not be modified.

CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute of
an object which cannot be satisfied because the object is either sensitive or unextractable.

CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a template.

CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for an attribute in a
template.

CKR_BUFFER_TOO_SMALL: The output of the function does not fit in the supplied buffer.

CKR_CANCEL: This is a value for an application callback to return. When a function
executing in serial with an application decides to give the application a chance to do some
work, it calls an application-supplied function with a CKN_SURRENDER callback. If the
callback returns the value CKR_CANCEL, then the function aborts (see
CKR_FUNCTION_CANCELED).

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 80214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is invalid. This
error only applies to the CKM_RSA_X 509 mechanism, when plaintext is supplied that has
the same number of bytes as the RSA modulus and is numerically at least as large as the
modulus. This return value has lower priority than CKR_DATA_LEN_RANGE.

CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a bad
length. Depending on the operation’s mechanism, this could mean that the plaintext data is
too short, too long, or is not a multiple of some particular blocksize. This return value has
higher priority than CKR_DATA_INVALID.

CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation has
been determined to be invalid ciphertext. This return value has lower priority than
CKR_ENCRYPTED_DATA_LEN_RANGE.

CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption operation
has been determined to be invalid ciphertext solely on the basis of its length. Depending on
the operation’s mechanism, this could mean that the ciphertext is too short, too long, or is not
a multiple of some particular blocksize. This return value has higher priority than
CKR_ENCRYPTED_DATA_INVALID.

CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This can
happen to a function executing in parallel with an application, if the application calls
C_CancelFunction; it can also happen to a function executing in serial with an application, if
the function makes a CKN_SURRENDER application callback, and the callback returns
CKR_CANCEL (see CKR_CANCEL).

CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in parallel in
the specified session.

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this
Cryptoki library. Even unsupported functions in the Cryptoki API should have a “stub” in
the library which simply returns the value CKR_FUNCTION_NOT_SUPPORTED.

CKR_FUNCTION_PARALLEL: There is currently a function executing in parallel in the
specified session. CKR_FUNCTION_PARALLEL is also returned whenever a Cryptoki
function call is made that executes in parallel.

CKR_INFORMATION_SENSITIVE: The information requested could not be obtained
because the token considers it sensitive, and is not able or willing to reveal it.

CKR_INSERTION_CALLBACK_NOT_SUPPORTED: The specified slot does not support
setting an application callback for token insertion.

CKR_KEY_CHANGED: One of the keys specified in a C_SetOperationState operation is not
the same key that was being used in the original saved session.

CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a key for a
cryptographic purpose that the key’s attributes are not set to allow it to do. For example, to
use a key for performing encryption, that key must have its CKA_ENCRYPT attribute set to
TRUE (the fact that the key must have a CKA_ENCRYPT attribute implies that the key
cannot be a private key). This return value has lower priority than
CKR_KEY_TYPE_INCONSISTENT.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page- 81213 Page 81

CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be the case
that the specified handle is a valid handle for an object which is not a key. We reiterate here
that 0 is never a valid key handle.

CKR_KEY_INDIGESTIBLE: The value of the specified key cannot be digested for some
reason (perhaps the key isn’t a secret key, or perhaps the token simply can’t digest this kind
of key).

CKR_KEY_NEEDED: The C_SetOperationState operation cannot be carried out because it
needs to be supplied with a key that was being used in the original saved session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOperationState. For
example, an attempt was made to restore a session that had been performing a message
digesting operation, and an encryption key was supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not have
its CKA_UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the token) is unable to wrap
the key as requested (possibly the token simply won’t support it).

CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation could in
principal be carried out, this Cryptoki library (or the token) is unable to actually do it because
the supplied key ‘s size is outside the range of key sizes that it can handle.

CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to use
with the specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be wrapped because
its CKA_UNEXTRACTABLE attribute is set to TRUE.

CKR_MECHANISM_INVALID: An invalid mechanism was specified to the cryptographic
operation.

CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation.

CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We reiterate
here that 0 is never a valid object handle.

CKR_OPERATION_ACTIVE: There is already an active operation (or combination of active
operations) which prevents Cryptoki from activating the specified operation. For example,
an active object-searching operation would prevent Cryptoki from activating an encryption
operation with C_Encryptlnit. Or, an active digesting operation and an active encryption
operation would prevent Cryptoki from activating a signature operation. Or, on a token
which doesn’t support dual cryptographic operations (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO structure), an active
signature operation would prevent Cryptoki from activating an encryption operation.

CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an appropriate type

in the specified session. For example, an application cannot call C_Encrypt in a session
without having called C_Encryptinit first to activate an encryption operation.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 82214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKR PIN EXPIRED: The specified PIN has expired (on a given token, the normal user’s PIN
may or may not expire).

CKR_PIN_INCORRECT: The specified PIN is wrong, and does not match the PIN stored on
the token. More generally, the attempt to authenticate the user has failed.

CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return code only
applies to functions which attempt to set a PIN.

CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return code only
applies to functions which attempt to set a PIN.

CKR PIN LOCKED: The specified PIN is “locked”, and cannot be used. That is, because
some particular number of failed authentication attempts has been reached, the token is
unwilling to permit further attempts at authentication.

CKR_RANDOM_NO_RNG: The specified token doesn’t have a random number generator.

CKR_RANDOM_SEED _NOT_SUPPORTED: The token’s random number generator does not
accept seeding from an application.

CKR_SAVED_STATE_INVALID: The supplied saved cryptographic operations state is
invalid, and so it cannot be restored to the specified session.

CKR_SESSION_COUNT: The attempt to open a session failed, either because the token has
too many sessions already open, or because the token has too many read/write sessions
already open.

CKR_SESSION_EXCLUSIVE_EXISTS: The attempt to open a session failed because there
already exists an exclusive session.

CKR_SESSION_EXISTS: A session with the token is already open.

CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not support
parallel sessions.

CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the desired
action because it is a read-only session. This return value has higher priority than
CKR_TOKEN_WRITE_PROTECTED.

CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so the SO
cannot be logged in.

CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already exists, and so a
read-only session cannot be opened.

CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be invalid,
solely on the basis of its length. This return value has higher priority than
CKR_SIGNATURE_INVALID.

CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return value
has lower priority than CKR_SIGNATURE_LEN_RANGE.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-83213 Page 83

CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified session
cannot be saved for some reason (possibly the token is simply unable to save the current
state). This return value has lower priority than CKR_FUNCTION_PARALLEL and
CKR_OPERATION_NOT_INITIALIZED.

CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes.

CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has
conflicting attributes.

CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not recognize the
token in the slot.

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed because
the token is write-protected. This return value has higher priority than
CKR_SESSION_READ_ONLY.

CKR_UNWRAPPING_KEY_HANDLE_INVALID: The key handle specified to be used to
unwrap another key is not valid.

CKR_UNWRAPPING_KEY_SIZE_RANGE: Although the requested unwrapping operation
could in principal be carried out, this Cryptoki library (or the token) is unable to actually do it
because the supplied key’s size is outside the range of key sizes that it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: The type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: The session cannot be logged in, because it is already
logged in.

CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in. One example is that a session
cannot be logged out unless it is logged in. Another example is that a private object cannot be
created on a token unless the session attempting to create it is logged in as the normal user. A
final example is that cryptographic operations on certain tokens cannot be performed unless
the normal user is logged in.

CKR_USER_PIN_NOT_INITIALIZED: The normal user’s PIN has not been initialized with
C_InitPIN.

CKR_USER_TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE. Valid
types are CKU_SO and CKU_USER.

CKR_WRAPPED_KEY_INVALID: The wrapped key is not valid. This return value has lower
priority than CKR_WRAPPED_KEY_LEN_RANGE.

CKR_WRAPPED_KEY_LEN_RANGE: The provided wrapped key can be seen to be invalid,

solely on the basis of its length. This return value has higher priority than
CKR_WRAPPED_KEY_INVALID.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 84214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKR_WRAPPING_KEY_HANDLE_INVALID: The key handle specified to be used to wrap
another key is not valid.

CKR_WRAPPING_KEY_SIZE_RANGE: Although the requested wrapping operation could in
principal be carried out, this Cryptoki library (or the token) is unable to actually do it because
the supplied wrapping key’s size is outside the range of key sizes that it can handle.

CKR_WRAPPING_KEY_TYPE_INCONSISTENT: The type of the key specified to wrap
another key is not consistent with the mechanism specified for wrapping.

9.1.5 More on relative priorities of Cryptoki errors

In general, error codes from Section 9.1.19-31 take precedence over error codes from Section
9.1.29:-12, which take precedence over error codes from Section 9.1.39:-13, which take precedence
over error codes from Section 9.1.49-1-4. One minor implication of this is that functions that use a
session handle never return the error code CKR_TOKEN_NOT _PRESENT (they return
CKR_SESSION_HANDLE_INVALID instead). Other than these precedences, if more than one
error code might apply to a Cryptoki call, any of the applicable error codes may be returned.
Exceptions to this rule will be explicitly mentioned.

9.2 Conventions for functions which return output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic
mechanism. The amount of output returned by these functions is returned in a variable-length
application-supplied buffer. An example of a function of this sort is C_Encrypt, which takes
some plaintext as an argument, and outputs a buffer full of ciphertext.

These functions have some common calling conventions, which we describe here. Two of the
arguments to the function are a pointer to the output buffer (say pBuf) and a pointer to a location
which will hold the length of the output produced (say pulBufLen). There are two ways for an
application to call such a function:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a number of
bytes which would suffice to hold the cryptographic output produced from the input to the
function. This number may somewhat exceed the precise number of bytes needed, but
should not exceed it by a large amount. CKR_OK is returned by the function.

2. If pBufis not NULL_PTR, then *pulBufLen must contain the size in bytes of the buffer pointed
to by pBuf. If that buffer is large enough to hold the cryptographic output produced from the
input to the function, then that cryptographic output is placed there, and CKR_OK is
returned by the function. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL
is returned. In either case, *pulBufLen is set to hold the exact number of bytes needed to hold
the cryptographic output produced from the input to the function.

All functions which use the above convention will explicitly say so.
Cryptographic functions which return output in a variable-length buffer should always return as
much output as can be computed from what has been passed in to them thus far. As an example,

consider a session which is performing a multiple-part decryption operation with DES in cipher-
block chaining mode with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page- 85213 Page 85

to the C_DecryptUpdate function. The blocksize of DES is 8 bytes, but the PKCS padding makes
it unclear at this stage whether the ciphertext was produced from encrypting a 0-byte string, or
from encrypting some string of length at least 8 bytes. Hence the call to C_DecryptUpdate
should return 0 bytes of plaintext. If a single additional byte of ciphertext is subsequently
supplied by C_DecryptUpdate, the call to C_DecryptUpdate should return 8 bytes of plaintext
(one full DES block).

9.3 Disclaimer concerning sample code

For the remainder of Section 99, we enumerate the various functions defined in Cryptoki. Most
functions will be shown in use in at least one sample code snippet. For the sake of brevity,
sample code will frequently be somewhat incomplete. In particular, sample code will generally
ignore possible error returns from C library functions, and also will not deal with Cryptoki error
returns in a realistic fashion.

9.4 General-purpose functions

Cryptoki provides the following general-purpose functions. These functions do not run in
parallel with the application.

C_Initialize

CK RV CK ENTRY C Initialize(
CK VA D _PTR pReserved
)

C_Initialize initializes the Cryptoki library. C_Initialize should be the first Cryptoki call made by
an application, except for calls to C_GetFunctionList. What this function actually does is
implementation-dependent: for example, it may cause Cryptoki to initialize its internal memory
buffers, or any other resources it requires; or it may perform no action. The pReserved parameter
is reserved for future versions; for this version, it should be set to NULL_PTR.

If several applications are using Cryptoki, each one should call C_lInitialize. Every call to
C_Initialize should (eventually) be succeeded by a single call to C_Finalize.

Return values: none other than the “universal” return values.

Example: see C_GetiInfo.

C_Finalize

CK RV CK_ENTRY C Finali ze(
CK VA D _PTR pReserved
)

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 86214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_Finalize is called to indicate that an application is finished with the Cryptoki library. It should
be the last Cryptoki call made by an application. The pReserved parameter is reserved for future
versions; for this version, it should be set to NULL_PTR.

If several applications are using Cryptoki, each one should call C_Finalize. Every call to
C_Finalize should be preceded by a single call to C_Initialize; in between the two calls, an
application makes calls to other Cryptoki functions.

RetunpleabeesCn@et bifer than the “universal” return values.

C_GetInfo

CK_RV CK_ENTRY C Get I nf o(
CK_I NFO PTR pl nfo
)

C_GetInfo returns general information about Cryptoki. plnfo points to the location that receives
the information.

Retumplealues: none other than the “universal” return values.

CK I NFO i nf o;
K RV rv;

rv = Clnitialize(NULL_PTR);
assert(rv == KR X);

rv = C Getlnfo(& nfo);
assert(rv == KR X);

i f(info.version. major == 2) {
/* Do lots of interesting cryptographic things with the token */

}

rv = C Finalize(NULL_PTR);
assert(rv == KR X);

C_GetFunctionList

OK_RV CK_ENTRY C_
OK_FUNCTI ON_
)

Get Funct i onLi st (
LI ST_PTR_PTR ppFuncti onLi st

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a wvalue which will receive a pointer to the library’s
CK_FUNCTION_LIST structure, which contains function pointers for all the Cryptoki API

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page 87213 Page 87

routines in the library. The pointer obtained may point into memory which is owned by the Cryptoki
library, and which may or may not be writable. In any case, no attempt should be made to write
to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before calling
C_Initialize. It is provided to make it easier and faster for applications to use shared Cryptoki
libraries and to use more than one Cryptoki library simultaneously.

Retumplealues: none other than the “universal” return values.

CK_FUNCTI ON_LI ST_PTR pFuncti onLi st;
CK Clnitialize pClnitialize;
K RV rv;

/* 1t’s OKto call C GetFunctionList before calling Clnitialize */
= C _Get Functi onLi st (&Functi onLi st);

assert(rv == KR X);

pClnitialize = pFunctionList -> C lnitialize;

/[* Call the Clnitialize function in the library */

rv = (*pC.lnitialize)(NULL_PTR);

9.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management. These functions do
not run in parallel with the application.

C_GetSlotList

CK RV CK_ENTRY C Get Sl ot Li st (
BOCL t okenPresent,
LOT I D PTR pSl ot Li st

ONG PTR pul Count

mml

K
oK
oK

o

C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates whether the list
obtained includes only those slots with a token present (TRUE), or all slots (FALSE); pulCount
points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL_PTR, then all that C_GetSlotList does is return (in *pulCount) the
number of slots, without actually returning a list of slots. The contents of the buffer pointed
to by pulCount on entry to C_GetSlotList has no meaning in this case, and the call returns the
value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount must contain the size (in terms of CK_SLOT _ID

elements) of the buffer pointed to by pSlotList. If that buffer is large enough to hold the list of
slots, then the list is returned in it, and CKR_OK is returned. If not, then the call to

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 88214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_GetSlotList returns the value CKR_BUFFER_TOO_SMALL. In either case, the value
*pulCount is set to hold the number of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often call
C_GetSlotList twice (or sometimes even more times—if an application is trying to get a list of all
slots with a token present, then the number of such slots can change between when the
application asks for how many such slots there are, and when the application asks for the slots
themselves). However, this is by no means required.

Reamnplealues: CKR_BUFFER_TOO_SMALL.

CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK SLOT_I D PTR pSl ot Li st, pSl ot WthTokenLi st;
K RV rv;

/* Get list of all slots */
rv = C GetSotlList(FALSE, NULL_PTR &ul Sl ot Count) ;
if (rv == KR X {
pSl ot Li st =
(K SLOT_ID PTR) mal | oc(ul Sl ot Count *si zeof (CK_SLOT_ID));
rv = C GetSotlist(FALSE, pSlotList, &ul Sl otCount);
if (rv == CKRX {
/* Now use that list of all slots */

}
free(pS otlList);

/[* Get list of all slots with a token present */
pSl ot Wt hTokenLi st = (CK SLOT_ID PTR) mal | oc(0);
ul Sl ot Wt hTokenCount = 0;
while (1) {
rv = C GetSotlList(
TRUE, pSl ot Wt hTokenLi st, ul Sl ot Wt hTokenCount) ;
if (rv !'= CKR BUFFER TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st
ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_ID));

}

if (rv == KRX {
/* Now use that list of all slots with a token present */

}
free(pS ot Wt hTokenLi st);

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-89213 Page 89

C_GetSlotInfo

OK_RV OK_ENTRY C Get Sl ot | nf of
OK_SLOT ID sl ot D,
CK_SLOT_I NFO PTR pl nf o

)

C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID of the
slot; pInfo points to the location that receives the slot information.

Return values: CKR_DEVICE_ERROR, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenInfo.

C_GetTokenlInfo

CK RV CK_ENTRY C_Get Tokenl nf o(
CK SLOT_ID slotlI Db,
CK_TCKEN_| NFO PTR pl nfo

)

C_GetTokenInfo obtains information about a particular token in the system. slotID is the ID of
the token’s slot; pInfo points to the location that receives the token information.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED.

Example:

CK_ULONG ul Count ;

CK SLOT_I D PTR pSl ot Li st;
CK SLOT_I NFO sl ot I nf o;
CK_TCKEN | NFO t okenl nf o;
K RV rv;

rv = C GetSotlist(FALSE, NULL_PTR &ul Count);

if ((rv ==CKR X && (ulCount > 0)) {
pSlotList = (K SLOT_ID PTR) nal | oc(ul Count *si zeof (CK_SLOT_ID));
rv = C GetS otlList(FALSE, pSlotList, &ul Count);
assert(rv == KR X);

/[* Get slot infornmation for first slot */
rv = CCGtSotlnfo(pSlotList[0], &slotlnfo);
assert(rv == KR X);

/* Get token information for first slot */

rv = C Get Tokenl nfo(pSl ot Li st[0], & okenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 90214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

free(pSl ot List);

C_GetMechanismList

CK_ RV CK_ENTRY C_Get Mechani snii st (
CK SLOT_ID slotI D,
CK_MECHAN SM TYPE _PTR pMechani snii st
CK_ULONG _PTR pul Count

)

C_GetMechanismList is used to obtain a list of mechanism types supported by a token. SlotID is
the ID of the token’s slot; pulCount points to the location that receives the number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return (in
*pulCount) the number of mechanisms, without actually returning a list of mechanisms. The
contents of *pulCount on entry to C_GetMechanismList has no meaning in this case, and the
call returns the value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_MECHANISM_TYPE elements) of the buffer pointed to by pMechanismList. If that
buffer is large enough to hold the list of mechanisms, then the list is returned in it, and
CKR_OK is returned. If not, then the call to C_GetMechanismList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the number of
mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application will often
call C_GetMechanismList twice. However, this is by no means required.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED.

Example:

CK SLOT_ID slotl D

CK_ULONG ul Count ;

CK_MECHAN SM TYPE _PTR pMechani snii st ;
K RV rv;

rv = C Get Mechani snlist(slotID NLL PTR &ul Count);
if ((rv ==CKR. XK && (ul Count > 0)) {
pMechani snii st =
(CK_MECHAN SM TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHAN SM TYPE)) ;
rv = C Get Mechani snii st (slotl D, pMechanisniist, &ul Count);
if (rv == CKRX {

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page 91213 Page 91

}
free(pMechani snii st) ;

C_GetMechanisminfo

CK_ RV CK_ENTRY C_Get Mechani sm nf o(
CK SLOT_ID slotlI Db,
CK_MECHAN | SM TYPE t ype,
CK_MECHAN SM | NFO PTR pl nfo
)

C_GetMechanismlinfo obtains information about a particular mechanism possibly supported by
a token. slotID is the ID of the token’s slot; type is the type of mechanism; pinfo points to the
location that receives the mechanism information.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_MECHANISM_INVALID, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED.

Example:
K SLOT_ID slotl
CK_MECHAN SM | NF
K RV rv;

(ORw)

i nfo;

[* Get information about the CKM M2 nechanismfor this token */
rv = C Get Mechani smnfo(slotl D, GKM M2, & nfo);
if (rv == CKRX {

if (info.flags & CKF_DI GEST) {

C_InitToken

CK_ RV CK_ENTRY C I nit Token(
CK SLOT_ID slotlI Db,
CK_CHAR PTR pPi n,
CK_ULONG ul Pi nLen,
CK_CHAR PTR pLabel

)

C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the SO’s initial
PIN; ulPinLen is the length in bytes of the PIN; pLabel points to the 32-byte label of the token (must
be padded with blank characters).

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 92214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except for
“indestructible” objects such as keys built into the token). Also, access by the normal user is
disabled until the SO sets the normal user’s PIN. Depending on the token, some “default” objects
may be created, and attributes of some objects may be set to default values.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. To initialize a token with such a
protected authentication path, the pPin parameter to C_InitToken should be NULL_PTR. During
the execution of C_InitToken, the SO’s PIN will be entered through the protected authentication
path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that an application has an open session with it;
when a call to C_InitToken is made under such circumstances, the call fails with error
CKR_SESSION_EXISTS. It may happen that some other application does have an open session
with the token, but Cryptoki cannot detect this, because it cannot detect anything about other
applications using the token. If this is the case, then what happens as a result of the C_InitToken
call is undefined.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_PIN_INCORRECT, CKR PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED.

Example:

CK SLOT ID slotl Dy

CK CHAR pin[] = {“"MW/PIN'};
CK_CHAR | abel [32];

CK RV rv;

menset (| abel , , Sizeof (label));

mencpy(l abel, “My first token”, sizeof(“My first token”));
rv = ClInitToken(slotlD, pin, sizeof(pin), |abel);

if (rv == CKRX) {

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page- 93213 Page 93

C_InitPIN

CK RV CK_ENTRY C InitPlI N
CK_SESSI ON_ HANDLE hSessi on,
CK_CHAR PTR pPi n,

CK_ULONG ul Pi nLen

)

C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin points to the
normal user’s PIN; ulPinLen is the length in bytes of the PIN.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it from a
session in any other state fails with error CKR_USER_NOT_LOGGED_IN.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. To initialize the normal user’s PIN on a
token with such a protected authentication path, the pPin parameter to C_InitPIN should be
NULL_PTR. During the execution of C_InitPIN, the SO will enter the new PIN through the
protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitPIN can be used to initialize the normal user’s token access.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED,
CKR_SESSION_READ_ONLY, CKR_SESSION_HANDLE_INVALID,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_|IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CHAR newPi n[]= {“NewPI N'};
K RV rv;

rv = CInitPIN hSession, newPin, sizeof(newPin));
if (rv == KRX) {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 94214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_SetPIN

CK_RV CK_ENTRY C Set Pl N
CK_SESSI ON_ HANDLE hSessi on,
CK_CHAR PTR pd dPi n,
CK_ULONG ul A dLen,

CK_CHAR PTR pNewRi n,
CK_ULONG ul NewLen
)

C_SetPIN modifies the PIN of the user that is currently logged in. hSession is the session’s
handle; pOIdPin points to the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin
points to the new PIN; ulNewLen is the length in bytes of the new PIN.

C_SetPIN can only be called in the “R/W SO Functions” state or “R/W User Functions” state.
An attempt to call it from a session in any other state fails with error
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. To modify the current user’s PIN on a
token with such a protected authentication path, the pOIldPin and pNewPin parameters to
C_SetPIN should be NULL_PTR. During the execution of C_SetPIN, the current user will enter
the old PIN and the new PIN through the protected authentication path. It is not specified how
the PINpad should be used to enter two PINSs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE, CKR PIN LOCKED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK CHAR ol dPin[] = {“AdPIN'};
CK CHAR newPin[] = {“NewPIN'};
K RV rv;

rv = C SetPI N

hSessi on, ol dPi n, sizeof (ol dPin), newPin, sizeof(newkin));
if (rv == CKRX) {

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page 95213 Page 95

9.6 Session management functions

Cryptoki provides the following functions for session management. These functions do not run in
parallel with the application.

A typatedtepmdkation might perform the following series of steps to make use of a token:
2. Make one or more calls to C_OpenSession to obtain sessions with the token.

3. Call C_Login to log the user into the token. Since all sessions an application has with a token
have a shared login state, C_Login only needs to be called for one session.

4. Perform cryptographic operations using the sessions with the token.
5. Call C_CloseSession once for each session that the application has with the token.
An application should not normally call C_CloseAllSessions or C_Logout to close its sessions

with a token. This is because these functions can affect the sessions “owned” by other
applications (see the discussion in Section 5.5 for more information). Therefore, an application

should call these functions only under Eceptional circumstances, unless the application
somehow “knows” that no other applications have sessions open with the token.

An application may have concurrent sessions with more than one token. It is also possible for a
token to have concurrent sessions with more than one application.

C_OpenSession

CK_ RV CK_ENTRY C (penSessi on(
CK SLOT _ID slotl D,
CK _FLAGS fl ags,
CK VA D _PTR pApplication,
CK_NOTI FY Noti fy,
CK_SESSI ON HANDLE PTR phSessi on

)

C_OpenSession has two distinct functions: it can set up an application callback so that an
application will be notified when a token is inserted into a particular slot, or it can open a session
between an application and a token in a particular slot. slotID is the slot’s ID; flags indicates the
type of session; pApplication is an application-defined pointer to be passed to the notification
callback; Notify is the address of the notification callback function (see Section 9.179-17); phSession
points to the location that receives the handle for the new session.

To set up a token insertion callback (instead of actually opening a session), the
CKF_INSERTION_CALLBACK bit in the flags parameter should be set. As a result of setting up
this callback, when a token is inserted into the specified slot, the application-supplied callback
Notify will be called with parameters (0, CKN TCKEN | NSERTI ON, pAppl i cati on) . Ifa
token is already present when C_OpenSession is called, then Notify will be called immediately
(conceivably even before C_OpenSession returns).

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 96214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

When C_OpenSession is called to set up a token insertion callback, the return code is either
CKR_INSERTION_CALLBACK_NOT_SUPPORTED (if the token doesn’t support insertion
callbacks) or CKR_OK (if the token does support insertion callbacks).

When opening a session with C_OpenSession, the flags parameter consists of the logical OR of
zero or more bit flags defined in the CK_SESSION_INFO data type. For example, if no bits are
set in the flags parameter, then C_OpenSession attempts to open a shared, read-only session,
with certain cryptographic functions being performed in parallel with the application. Any or all
of the CKF_EXCLUSIVE_SESSION, CKF_RW_SESSION, and CKF_SERIAL_SESSION bits can
be set in the flags parameter to modify the type of session requested.

If an exclusive session is requested (by setting the CKF_EXCLUSIVE_SESSION bit), but is not
available (because there is already a session open), C_OpenSession returns
CKR_SESSION_EXISTS. If a parallel session is requested (by not setting the
CKR_SERIAL_SESSION bit), but is not supported on this token, then C_OpenSession returns
CKR_PARALLEL_NOT_SUPPORTED. These two error returns have equal priorities.

In a parallel session, cryptographic functions may return control to the application before
completing (the return value CKR_FUNCTION_PARALLEL indicates that this condition applies).
The application may then call C_GetFunctionStatus to obtain an updated status of the function’s
execution, which will continue to be CKR_FUNCTION_PARALLEL until the function completes,
and CKR_OK or some other return value when the function completes. Alternatively, the
application can wait until Cryptoki sends notification that the function has completed through the
Notify callback. The application may also call C_CancelFunction to cancel the function before it
completes.

Note that even in a parallel session, there is no guarantee that a particular function will execute in
parallel. Therefore, an application should always check cryptographic functions’ return codes to
see whether the function is running in parallel, or whether it ran in serial [and is already
finished].

If an application calls another function (cryptographic or otherwise) before one that is executing
in parallel in the same session completes, Cryptoki will wait until the one that is executing
completes. Thus, an application can run only one function at any given time in a given session.
To achieve parallel execution of multiple functions, the application should open additional
sessions.

Cryptographic functions running in serial with the application may periodically surrender control
to the application by calling Notify with a CKN_SURRENDER callback so that the application
may perform other operations or cancel the function.

Non-cryptographic functions always run in serial with the application, and do not surrender
control. A function in a parallel session will never surrender control back to the application via a
CKN_SURRENDER application callback, even if that particular function is actually executing in
serial with the application.

There may be a limit on the number of concurrent sessions with the token, which may depend on
whether the session is “read-only” or “read/write”. An attempt to open a session which does not
succeed because there are too many existing sessions of some type should return
CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then only read-
only sessions may be opened with it.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page 97213 Page 97

If the application calling C_OpenSession already has a R/W SO session open with the token,
then any attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 5.5.85:5:8).

The Notify callback function is used by Cryptoki to notify the application of certain events. If the
application does not wish to support callbacks, it should pass a value of NULL_PTR as the Notify
parameter. See Section 9.179-17 for more information about application callbacks.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_INSERTION_CALLBACK_NOT_SUPPORTED, CKR_SESSION_COUNT,
CKR_SESSION_EXISTS, CKR_SESSION_EXCLUSIVE_EXISTS,
CKR_SESSION_PARALLEL_NOT_SUPPORTED, CKR_SESSION_READ_WRITE_SO_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_CloseSession.

C_CloseSession

CK RV CK_ENTRY C _d oseSessi on(
CK_SESSI ON_ HANDLE hSessi on
)

C_CloseSession closes a session between an application and a token. hSession is the session’s
handle.

When a session is closed, all session objects created by the session are destroyed automatically,
even if the application has other sessions “using” the objects (see Sections 5.5.55:5:5-5.5.85-5-8 for
more details). If a function is running in parallel with the session, it is canceled.

Depending on the token, when the last open session any application has with the token is closed,
the token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is an error return. It indicates the (probably somewhat unlikely) event
that while this function call was executing, another call was made to C_CloseSession to close this
particular session, and that call finished executing first. Such uses of sessions are a bad idea, and
Cryptoki makes little promise of what will occur in general if an application indulges in this sort
of behavior.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK SLOT_ID slotl D

CK _BYTE application;
CK_NOTI FY M/Not i fy;
CK_SESSI ON_ HANDLE hSessi on;
K RV rv;

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 98214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

application = 17;

M/Notify = &EncryptionSessi onCal | back;

rv = C_(penSessi on(
slot1 D, CKF_ RWSESSI QN (CK VO D PTR &application, M/Notify,
&hSessi on) ;

if (rv == KRX) {

C_CI oseSessi on(hSessi on) ;
}

C_CloseAllSessions

CK RV CK_ENTRY C O oseAl | Sessi ons(
K SLOT_ID slotID
)

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies the
token’s slot.

Because an application may have access to sessions “owned” by another application (see Section
5.5), this function should only be called under special circumstances. In general, an application |
should close all its sessions one at a time with C_CloseSession, rather than calling
C_CloseAllSessions.

Depending on the token, when the last open session any application has with the token is closed,
the token may be “ejected” from its reader (if this capability exists).

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.

Example:

CK SLOT_ID slotl D
K RV rv;

.rv = C doseAll Sessions(slotlD);

C_GetSessioninfo

CK_ RV CK_ENTRY C _Get Sessi onl nf o(
CK_SESSI ON_ HANDLE hSessi on,
CK_SESSI ON I NFO PTR pl nfo

)

C_GetSessionInfo obtains information about a session. hSession is the session’s handle; pinfo
points to the location that receives the session information.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page- 99213 Page 99

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
K RV rv;

.rv = C _Get Sessi onl nf o(hSessi on, & nfo);
if (rv == CKRX) {
if (info.state == CKS_RWUSER FUNCTI ONS) {

C_GetOperationState

CK RV CK _ENTRY C Get (perati onSt at e(
CK_SESSI ON HANDLE hSessi on,
CK _BYTE_PTR pQperati onSt at e,
CK_ULONG PTR pul Oper ati onSt at eLen

)

C_GetOperationState obtains the cryptographic operations state of a session, encoded as a string
of bytes. hSession is the session’s handle; pOperationState points to the location that receives the
state; pulOperationStateLen points to the location that receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention described in
Section 9.29:2 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from token to
token; however, this state is what is provided as input to C_SetOperationState to restore the
cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the session
is using the CKM_SHA_1 mechanism). Suppose that the message digest operation was
initialized properly, and that precisely 80 bytes of data have been supplied so far as input to
SHA-1. The application now wants to “save the state” of this digest operation, so that it can
continue it later. In this particular case, since SHA-1 processes 512 bits (64 bytes) of input at a
time, the cryptographic operations state of the session most likely consists of three distinct parts:
the state of SHA-1’s 160-bit internal chaining variable; the 16 bytes of unprocessed input data;
and some administrative data indicating that this saved state comes from a session which was
performing SHA-1 hashing. Taken together, these three pieces of information suffice to continue
the current hashing operation at a later time.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 100214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2 |

Consider next a session which is performing an encryption operation with DES (a block cipher
with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session is using the
CKM_RE2DES CBC mechanism). Suppose that precisely 22 bytes of data (in addition to an 1V |
for the CBC mode) have been supplied so far as input to DES, which means that the first two 8-
byte blocks of ciphertext have already been produced and output. In this case, the cryptographic
operations state of the session most likely consists of three or four distinct parts: the second 8-byte
block of ciphertext (this will be used for cipher-block chaining to produce the next block of
ciphertext); the 6 bytes of data still awaiting encryption; some administrative data indicating that
this saved state comes from a session which was performing DES encryption in CBC mode; and
possibly the DES key being used for encryption (see C_SetOperationState for more information
on whether or not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section 9.139:13),
then the cryptographic operations state of the session will contain all the necessary information to
restore both operations.

A session which is in the middle of executing a Cryptoki function cannot have its cryptographic
operations state saved. An attempt to do so returns the error CKR_FUNCTION_PARALLEL.

An attempt to save the cryptographic operations state of a session which does not currently have
some active saveable cryptographic operation(s) (encryption, decryption, digesting, signing
without message recovery, verification without message recovery, or some legal combination of
two of these) should fail with the error CKR_OPERATION_NOT_INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of various
reasons (certain necessary state information and/or key information can’t leave the token, for
example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE.

Example: see C_SetOperationState.

C_SetOperationState

CK RV CK _ENTRY C Set (per ati onSt at e(
CK_SESSI ON HANDLE hSessi on,
CK _BYTE_PTR pQperati onSt at e,
CK_ULONG ul Qperati onSt at eLen,
CK_OBJECT_HANDLE hEncrypt i onKey,
CK_CBJECT_HANDLE hAut hent i cati onKey

C_SetOperationState restores the cryptographic operations state of a session from a string of
bytes obtained with C_GetOperationState. hSession is the session’s handle; pOperationState points
to the location holding the saved state; ulOperationStateLen holds the length of the saved state;
hEncryptionKey holds a handle to the key which will be used for an ongoing encryption or

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-101213

Page 101

decryption operation in the restored session (or 0 if no encryption or decryption key is needed,
either because no such operation is ongoing in the stored session or because all the necessary key
information is present in the saved state); hAuthenticationKey holds a handle to the key which will
be used for an ongoing signature, MACing, or verification operation in the restored session (or 0
if no such key is needed, either because no such operation is ongoing in the stored session or
because all the necessary key information is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it is being
restored to (the “destination session”). However, the source session and destination session
should have a common session state (e.g., CKS_RW_USER_FUNCTIONS), and should be with a
common token. There is also no guarantee that cryptographic operations state may be carried
across logins, or across different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state which it
can determine is not valid saved state (or is cryptographic operations state from a session with a
different session state, or is cryptographic operations state from a different token), it fails with the
error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain information
about keys in use for ongoing cryptographic operations. If a saved cryptographic operations state
has an ongoing encryption or decryption operation, and the key in use for the operation is not
saved in the state, then it must be supplied to C_SetOperationState in the hEncryptionKey
argument. If it is not, then C_SetOperationState will fail and return the error
CKR_KEY_NEEDED. If the key in use for the operation is saved in the state, then it can be
supplied in the hEncryptionKey argument, but this is not required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing, or
verification operation, and the key in use for the operation is not saved in the state, then it must
be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is not, then
C_SetOperationState will fail with the error CKR_KEY_NEEDED. If the key in use for the
operation is saved in the state, then it can be supplied in the hAuthenticationKey argument, but this
is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle is
submitted in the hEncryptionKey argument, but the saved cryptographic operations state supplied
does not have an ongoing encryption or decryption operation, then C_SetOperationState fails
with the error CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState can
somehow detect that this key was not the key being used in the source session for the supplied
cryptographic operations state (it may be able to detect this if the key or a hash of the key is
present in the saved state, for example), then C_SetOperationState fails with the error
CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the flags field of the
CK_TOKEN_INFO field for a token to determine whether or not it needs to supply key handles
to C_SetOperationState calls. If this flag is TRUE, then a call to C_SetOperationState never
needs a key handle to be supplied to it. If this flag is FALSE, then at least some of the time,
C_SetOperationState requires a key handle, and so the application should probably always pass
in any relevant key handles when restoring cryptographic operations state to a session.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 102214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_SetOperationState can successfully restore cryptographic operations state to a session even if
that session has active cryptographic or object search operations when C_SetOperationState is
called (the ongoing operations are abruptly cancelled).

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_KEY_CHANGED, CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED,
CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_MECHAN SM di gest Mechani sm
CK_ULONG ul St at elLen;

CK _BYTE dat al[]
CK _BYTE dat a?[]

{0x01, 0x03, 0x05, 0x07};
{0x02, 0x04, 0x08};

CK BYTE data3[] = {0x10, OxOF, OxOE, 0x0D, 0x0C;
CK _BYTE pD gest|[20];
CK_ULONG ul D gest Len;

K RV rv;

)* Initialize hash operation */
rv = C D gestlnit(hSession, &digestMechanisnj;
assert(rv == KR X);

[* Start hashing */
rv = C D gest Updat e(hSessi on, datal, sizeof(datal));

assert(rv

KR XK);

/* Find out how big the state m ght be */
rv = C Get perationState(hSession, NLL_PTR, &ul St atelLen);

assert(rv

KR XK);

/* Alocate sone nenory and then get the state */
pState = (K BYTE PTR) mal | oc(ul StatelLen);
rv = C GetperationState(hSession, pState, &ul Statelen);

/* Continue hashing */
rv = C D gest Updat e(hSessi on, data2, sizeof(data2));
assert(rv == KR X);

/* Restore state. No key handl es needed */
rv = C Set (perationState(hSession, pState, ul StateLen, 0, 0);

assert(rv

KR XK);

/* Continue hashing fromwhere we saved state */
rv = C D gest Updat e(hSessi on, data3, sizeof(data3));

assert(rv

KR XK);

/* Concl ude hashi ng operation */
ul Di gest Len = si zeof (pDi gest);
rv = C D gestFinal (hSession, pD gest, &ul D gestLen);

if (rv

KR) {

/* pDigest[] now contains the hash of 0x01030507100FOEODOC */

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-103213 | Page 10t

C_Login

CK_RV CK_ENTRY C_Logi n(
CK_SESSI ON_HANDLE hSessi on,
CK_USER TYPE user Type,
CK_CHAR PTR pPFi n,
CK_ULONG ul Pi nLen

)

C_Login logs a user into a token. hSession is a session handle; userType is the user type; pPin
points to the user’s PIN; ulPinLen is the length of the PIN.

Depending on the user type, if the call succeeds, each of the application’s sessions will enter
either the “R/W SO Functions” state, the “R/W User Functions” state, or the “R/O User
Functions” state.

If the token has a “protected authentication path”, as indicated by the
CKR_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being set, then
that means that there is some way for a user to be authenticated to the token without having the
application send a PIN through the Cryptoki library. One such possibility is that the user enters a
PIN on a PINpad on the token itself, or on the slot device. Or the user might not even use a
PIN—authentication could be achieved by some fingerprint-reading device, for example. To log
into a token with a protected authentication path, the pPin parameter to C_Login should be
NULL_PTR. When C_Login returns, whatever authentication method supported by the token
will have been performed; a return value of CKR_OK means that the user was successfully
authenticated, and a return value of CKR_PIN_INCORRECT means that the user was denied
access.

If there are any active cryptographic or object finding operations in a session, and then C_Login is
successfully executed, it may or may not be the case that those operations are still active.
Therefore, before logging in, any active operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be unable to
log the SO into a session (see Section 5.5.85:5-8). An attempt to do this will result in the error code |
CKR_SESSION_READ_ONLY_EXISTS.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_PIN_EXPIRED, CKR_PIN_INCORRECT, CKR PIN LOCKED, |
CKR_SESSION_READ_ONLY_EXISTS, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_PIN_NOT_INITIALIZED, CKR_USER_TYPE_INVALID.

Example: see C_Logout.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 104214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_Logout

CK_ RV CK _ENTRY C _Logout (
CK_SESSI ON_ HANDLE hSessi on
)

C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s sessions will
enter either the “R/W Public Session” state or the “R/0O Public Session” state.

When C_Logout successfully executes, any of the application’s handles to private objects become
invalid (even if a user is later logged back into the token, those handles remain invalid). In
addition, all private session objects are destroyed.

If there are any active cryptographic or object finding operations in a session, and then C_Logout
is successfully executed, it may or may not be the case that those operations are still active.
Therefore, before logging out, any active operations should be finished.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK CHAR userPIN] = {“"M/PIN'};
K RV rv;

rv = C Logi n(hSession, CKU USER wuserPI N sizeof (userPIN));
if (rv == CKRX) {

rv == C Logout (hSessi on):
if (rv = KR.XK) {

9.7 Object management functions
Cryptoki provides the following functions for managing objects. These functions do not run in

parallel with the application. Additional functions provided specifically for managing key objects
are described in Section 9.149:14.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-105213 | Page 10¢

C_CreateObject

CK RV CK_ENTRY C Creat e(hj ect (
CK_SESSI ON_ HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_CBJECT_HANDLE _PTR ph(bj ect

)

C_CreateObiject creates a new object. hSession is the session’s handle; pTemplate points to the
object’s template; ulCount is the number of attributes in the template; phObject points to the
location that receives the new object’s handle.

If C_CreateObject is used to create a key object, the key object will have its CKA_LOCAL
attribute set to FALSE.

Only session object can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values; CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE
hDat a,
hCertificate,
hKey;
CK_CBJECT_CLASS
dat ad ass = CKO DATA,
certificated ass = CKO CERTI FI CATE,
keyd ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK RSA
CK CHAR application[] = {“M/ Application”};
CK BYTE dataVal ue[] ={...};
CK BYTE subject[] ={...};
K BYTE id[] ={...};
CK BYTE certificateValue[] = {...};
CK BYTE nodul us[] ={...};
CK _BYTE exponent[] ={...};
CK BYTE true = TRUE
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA CLASS, &datad ass, sizeof (datad ass)},
{CKA TCKEN, &true, sizeof(true)},
{ KA _APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVal ue, sizeof (dataVal ue)}
b
CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass, sizeof(certificated ass)},
{CKA TCKEN, &true, sizeof(true)},
{ KA _SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 106214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

{CKA VALUE, certificateVal ue, sizeof(certificateValue)}

I
CK_ATTRI BUTE keyTenpl ate[] = {

{ KA CLASS, &keyd ass, sizeof (keyd ass)},

{ KA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA WRAP, &true, sizeof(true)},

{CKA_ MDULUS, nodul us, si zeof (rmodul us)},

{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}
I
CK RV rv;

)* O eate a data object */
rv = C Oeate(ject (hSession, &JataTenplate, 4, &hbData);
if (rv == KR X {

}

/* Oreate a certificate object */
rv = C Oeate(ject (

hSession, &certificateTenplate, 5, &hCertificate);
if (rv == KR X {

}

/* Oreate an RSA private key object */
rv = C_ Oeate(ject (hSession, &eyTenpl ate, 5, &hKey);
if (rv == KR X {

C_CopyObject

CK_ RV CK_ENTRY C _Copy(bj ect (

)

CK_SESSI ON_ HANDLE hSessi on,
CK_CBJECT_HANDLE h(nj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_CBJECT_HANDLE _PTR phNew(hj ect

C_CopyObject copies an object, creating a new object for the copy. hSession is the session’s
handle; hObject is the object’s handle; pTemplate points to the template for the new object; ulCount
is the number of attributes in the template; phNewObject points to the location that receives the
handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily be
modified (e.g., in the course of copying a secret key, a key’s CKA_EXTRACTABLE attribute may
be changed from TRUE to FALSE, but not the other way around. If this change is made, the new

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-107213

Page 10

key’s CKA_NEVER_EXTRACTABLE attribute will have the value FALSE. Similarly, the
template may specify that the new key’s CKA_SENSITIVE attribute be TRUE; the new key will
have the same value for its CKA_ALWAYS_SENSITIVE attribute as the original key). It may
also specify new values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a
session object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Only session objects can be created during a read-only session. Only public objects can be created
unless the normal user is logged in.

Return values; CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_CBJECT_HANDLE hKey, hNewKey;

CK_OBJECT_CLASS keyd ass = CKO SECRET_KEY,;

CK_KEY_TYPE keyType = CKK _DES;

K BYTE id[] ={...};

CK BYTE keyVal ue[] ={...};

CK BYTE fal se = FALSE;

CK BYTE true = TRUE

CK_ATTRI BUTE keyTenpl ate[] = {
{ KA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TCKEN, &f al se, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, sizeof (keyVal ue)}

I
CK_ATTRI BUTE copyTenpl ate[] = {
{CKA TCKEN, &true, sizeof(true)}

1
K RV rv;

/* Oreate a DES secret key session object */
rv = C_ Oeate(ject (hSession, &eyTenpl ate, 5, &hKey);
if (rv ==CKR X {
/* Oreate a copy which is a token object */
rv = C Copynj ect (hSessi on, hKey, ©Tenplate, 1, &NewKey);

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 108214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_DestroyObject

CK_ RV CK_ENTRY C Destroyhj ect (
CK_SESSI ON HA NDLE hSessi on,
CK_CBJECT_HANDLE h(nj ect

)

C_DestroyObiject destroys an object. hSession is the session’s handle; and hObject is the object’s
handle.

Only session objects can be destroyed during a read-only session. Only public objects can be
destroyed unless the normal user is logged in.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

C_GetObjectSize

CK RV CK_ENTRY C Get (hj ect Si ze(
CK_SESSI ON_ HANDLE hSessi on,
CK_CBJECT_HANDLE h(bj ect,
CK_ULONG PTR pul Si ze

)

C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle; hObject is the
object’s handle; pulSize points to the location that receives the size in bytes of the object.

Cryptoki does not specify what the meaning of an object’s size is. Intuitively, it is some measure
of how much token memory the object takes up. If an application deletes (say) a private object of
size S, it might be reasonable to assume that the ulFreePrivateMemory field of the token’s
CK_TOKEN_INFO structure increases by approximately S.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_CBJECT_HANDLE h(bj ect ;

CK_CBJECT_CLASS dat ad ass = CKO DATA

CK CHAR application[] = {“M/ Application”};

CK BYTE dataVal ue[] ={...};

CK BYTE val ue[] ={...};

CK BYTE true = TRUE

CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &datad ass, sizeof (datad ass)},
{CKA TCKEN, &true, sizeof(true)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS

{ CKA_APPLI CATI ON, application,

1
CK ULONG ul Si ze;

K RV rv;

si zeof (appl i cation)},

{CKA VALUE, val ue, sizeof (value)}

.rv = C O eatelhj ect(hSession, &enplate, 4, &ject);

if (rv == KRX {
rv = C Get vj ect Si ze(hSessi on,

hCbj ect, &ul S ze);

if (rv != OKR | NFORVATI ON_SENSI TI VE) {

}
rv = C Destroy(j ect (hSessi on,

C_GetAttributeValue

hChj ect) ;

Page 10¢

CK RV CK ENTRY C Get Attri but eVal ue(

)

CK_SESSI ON_ HANDLE hSessi on,
CK_CBJECT_HANDLE h(nj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

C_GetAttributeVValue obtains the value of one or more attributes of an object. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies which

attribute values are to be obtained, and receives the attribute values; ulCount is the number of

attributes in the template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeVValue performs the
following algorithm:

1.

If the specified attribute (i.e., the attribute specified by the type field) for the object cannot be
revealed because the object is sensitive or reunextractable, then the ulValueLen field in that
triple is modified to hold the value -1 (i.e., when it is cast to a CK_LONG, it holds -1).

Otherwise, if the specified attribute for the object is invalid (the object does not possess such
an attribute), then the ulValueLen field in that triple is modified to hold the value -1.

Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is modified
to hold the exact length of the specified attribute for the object.

Otherwise, if the length specified in ulValueLen is large enough to hold the value of the
specified attribute for the object, then that attribute is copied into the buffer located at pValue,

and the ulValuelLen field is modified to hold the exact length of the attribute.

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 110214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

5. Otherwise, the ulValueLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes, then the call
should return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5 applies to any of the
requested attributes, then the call should return the value CKR_BUFFER_TOO_SMALL. As
usual, if more than one of these error codes is applicable, Cryptoki may return any of them. Only
if none of them applies to any of the requested attributes will CKR_OK be returned.

Note that the error codes CKR ATTRIBUTE SENSITIVE, CKR ATTRIBUTE TYPE INVALID,
and CKR BUFFER TOO SMALL do not denote true errors for C GetAttributeValue. If a call
to C GetAttributeValue returns any of these three values, then the call must nonetheless have
processed every attribute in the template supplied to C_GetAttributeVValue. Each attribute in the
template whose value can be returned by the call to C GetAttributeVValue will be returned by the
call to C GetAttributeValue.

Return values: CKR_ATTRIBUTE_SENSITIVE, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE h(bj ect ;
CK_BYTE_PTR phbdul us, pExponent;
CK_ATTRI BUTE tenplate[] = {
{CKA_MCDULUS, NULL_PTR 0},
{ CKA_PUBLI C_EXPONENT, NULL_PTR 0}
b
CK RV rv;

rv = C GetAttributeVal ue(hSession, hChject, &enplate, 2);

if (rv == CKRX) {
pMdul us = (K BYTE PTR) mal | oc(tenpl at e[0] . ul Val ueLen);
tenpl at e[0] . pVal ue = phodul us;
/* tenplate[0].ul Val ueLen was set by C Get AttributeVal ue */

pExponent = (CK BYTE PTR) nal | oc(tenpl at e[1] . ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenplate[1].ul Val ueLen was set by C Get AttributeVal ue */

rv = C GetAttributeVal ue(hSession, hChject, &enplate, 2);
if (rv == KR X {

}
free(pModul us);
free(pExponent);

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-111213 | Page 11!

C_SetAttributeValue

CK RV CK ENTRY C Set Attri but eVal ue(
CK_SESSI ON_ HANDLE hSessi on,
CK_CBJECT_HANDLE h(bj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_SetAttributeVValue modifies the value of one or more attributes of an object. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to a template that specifies which
attribute values are to be modified and their new values; ulCount is the number of attributes in
the template.

Omdytsesplateabjgytsperi fiyemendiibaed doimarey rattdHomtgsses fom object that can be modified. If the
template specifies a value of an attribute which is incompatible with other existing attributes of
the object, the call fails with the return code CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 88
_— for more details.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_OBJECT_HANDLE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE h(nj ect ;
CK CHAR label [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA LABEL, | abel, sizeof(Ilabel)
I

CK RV rv;

.rv = C Set AttributeVal ue(hSession, hCbject, &enplate, 1);
if (rv == CKRX {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 112214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_FindObijectslnit

CK_ RV CK_ENTRY C _Fi nd(bj ect sl nit(
CK_SESSI ON_ HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_FindObijectsInit initializes a search for token and session objects that match a template.
hSession is the session’s handle; pTemplate points to a search template that specifies the attribute
values to match; ulCount is the number of attributes in the search template. The matching
criterion is an exact byte-for-byte match with all attributes in the template. To find all objects, set
ulCount to 0.

After calling C_FindObjectsinit, the application may call C_FindObjects one or more times to
obtain handles for objects matching the template, and then eventually call C_FindObjectsFinal to
finish the active search operation. At most one search operation may be active at a given time in a
given session.

The object search operation will only find objects that the session can view. For example, an
object search in an “R/W Public Session” will not find any private objects (even if one of the
attributes in the search template specifies that the search is for private objects).

If a search operation is active, and objects are created or destroyed which fit the search template
for the active search operation, then those objects may or may not be found by the search
operation. Note that this means that, under these circumstances, the search operation may return
invalid object handles.

Even though C_FindObijectsInit can return the values CKR_ATTRIBUTE_TYPE_INVALID and
CKR_ATTRIBUTE_VALUE_INVALID, it is not required to. For example, if it is given a search
template with nonexistent attributes in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it
can return CKR_OK and initialize a search operation which will match no objects.

Return values: CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

C_FindObijects

CK_ RV CK_ENTRY C _Fi nd(bj ect s(
CK_SESSI ON_ HANDLE hSessi on,
CK_CBJECT_HANDLE _PTR ph(bj ect,
CK_ULONG ul Max(nj ect Count
CK_ULONG _PTR pul oj ect Count

)

C_FindObijects continues a search for token and session objects that match a template, obtaining
additional object handles. hSession is the session’s handle; phObject points to the location that
receives the list (array) of additional object handles; ulMaxObjectCount is the maximum number of

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-113213

Page 11:

object handles to be returned; pulObjectCount points to the location that receives the actual
number of object handles returned.

If there are no more objects matching the template, then the location that pulObjectCount points to
receives the value 0.

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

C_FindObjectsFinal

CK_ RV CK_ENTRY C _Fi nd(bj ect sFi nal (
CK_SESSI ON_ HANDLE hSessi on
)

C_FindObijectsFinal terminates a search for token and session objects. hSession is the session’s
handle.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hvj ect;
CK_ULONG ul (pj ect Count ;

K RV rv;

rv = C FindQpj ectslnit(hSession, NULL_PTR 0);
assert(rv == KR X);
while (1) {
rv = C Fi ndQpj ect s(hSessi on, &Qbj ect, 1, &ul bject Count);
if (rv!= KR K || ul jectCount == 0)
br eak;

}

rv = C_Fi ndQvj ect sFi nal (hSessi on);
assert(rv == KR X);

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 114214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

9.8 Encryption functions
Cryptoki provides the following functions for encrypting data. All these functions may run in

parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set
to FALSE (check the return code of the function call to see if the function is running in parallel).

C_Encryptlnit

CK RV CK_ENTRY C EncryptlInit(
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Encryptinit initializes an encryption operation. hSession is the session’s handle; pMechanism
points to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports
encryption, must be TRUE.

After calling C_Encryptinit, the application can either call C_Encrypt to encrypt data in a single
part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data
in multiple parts. The encryption operation is active until the application uses a call to C_Encrypt
or C_EncryptFinal to actually obtain the final piece of ciphertext. To process additional data (in
single or multiple parts), the application must call C_Encryptlnit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example: see C_EncryptFinal.

C_Encrypt

CK_ RV CK_ENTRY C Encrypt (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK _BYTE_PTR pEncrypt edDat a,
CK_ULONG _PTR pul Encrypt edDat aLen

)

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to the data;
ulDataLen is the length in bytes of the data; pEncryptedData points to the location that receives the
encrypted data; pulEncryptedDatalLen points to the location that holds the length in bytes of the
encrypted data.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

©
@

FUNCTIONSFUNCTIONSMECHANISMS age-115213

Page 11¢

C_Encrypt uses the convention described in Section 9.29:2 on producing output.

The encryption operation must have been initialized with C_Encryptinit. A call to C_Encrypt
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the ciphertext.

For some encryption mechanisms, the input plaintext data has certain length constraints (either
because the mechanism can only encrypt relatively short pieces of plaintext, or because the
mechanism’s input data must consist of an integral number of blocks). If these constraints are not
satisfied, then C_Encrypt will fail with return code CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and pEncryptedData
point to the same location.

C_Encrypt is equivalent to a sequence of C_EncryptUpdate and C_EncryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

C_EncryptUpdate

CK_ RV CK_ENTRY C _Encrypt Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul P artLen,
CK_BYTE_PTR pEncrypt edPart ,
CK_ULONG _PTR pul Encrypt edPart Len

)

C_EncryptUpdate continues a multiple-part encryption operation, processing another data part.
hSession is the session’s handle; pPart points to the data part; ulPartLen is the length of the data
part; pEncryptedPart points to the location that receives the encrypted data part;
pulEncryptedPartLen points to the location that holds the length in bytes of the encrypted data
part.

C_EncryptUpdate uses the convention described in Section 9.29-2 on producing output.

The encryption operation must have been initialized with C_Encryptinit. This function may be
called any number of times in succession. A call to C_EncryptUpdate which results in an error
other than CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The encryption operation must have been initialized with C_Encryptinit. A call to C_Encrypt
always terminates the active encryption operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the ciphertext.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 116214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and pEncryptedPart
point to the same location.

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

C_EncryptFinal

CK RV CK_ENTRY C _Encrypt Fi nal (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart ,
CK_ULONG _PTR pul Last Encr ypt edPar t Len

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;
pulLastEncryptedPartLen points to the location that holds the length of the last encrypted data part.

C_EncryptFinal uses the convention described in Section 9.29:2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. A call to
C_EncryptFinal always terminates the active encryption operation wunless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of blocks. If
these constraints are not satisfied, then C_EncryptFinal will fail with return code
CKR_DATA_LEN_RANGE.

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#defi ne PLAI NTEXT_BUF_SZ 200
#defi ne O PHERTEXT _BUF_SZ 256

CK_ULONG firstPi eceLen, secondPi ecelLen;
CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE hKey;
CK BYTE iv[8];
CK_MECHAN SM rrechani sm = {

CKM DES _CBC PAD, iv, sizeof(iv)
H

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

©
@

FUNCTIONSFUNCTIONSMECHANISMS age-117213

Page 11;

CK_BYTE dat a[PLAI NTEXT_BUF_SZ7] ;

CK_BYTE encrypt edDat a[O PHERTEXT_BUF_S7] ;
CK_ULONG ul Encrypt edDat allen;

CK_ULONG ul Encr ypt edDat a2Len;

CK_ULONG ul Encr ypt edDat a3Len;

K RV rv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT BUF SZ-first Pi ecelLen;
rv = C Encryptlnit(hSession, &rechani sm hKey);
if (rv ==CKR X {
/* Encrypt first piece */
ul Encrypt edDat allLen = si zeof (encrypt edDat a) ;
rv = C Encrypt Updat e(
hSessi on,
&dat a[0], firstPiecelLen,
&encrypt edDat a[0], &ul Encrypt edDat allen);
if (rv!i= KRX {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) - ul Encr ypt edDat allen;
rv = C _Encrypt Updat e(

hSessi on,

&dat a[fi r st Pi eceLen], secondPi ecelLen,

&encr ypt edDat a[ul Encrypt edDat alLen], &ul Encrypt edDat a2Len);
if (rv!i= KRX {

}

/[* CGet last little encrypted bit */
ul Encr ypt edDat a3Len =
si zeof (encr ypt edDat a)
- ul Encr ypt edDat allen- ul Encrypt edDat a2Len;
rv = C Encrypt Final (
hSessi on,
&encr ypt edDat af ul Encr ypt edDat allLen+ul Encrypt edDat a2Len],
&ul Encr ypt edDat a3Len) ;
if (rv!i= KRX {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 118214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

9.9 Decryption functions
Cryptoki provides the following functions for decrypting data. All these functions may run in

parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set
to FALSE (check the return code of the function call to see if the function is running in parallel).

C_Decryptlnit

CK RV CK_ENTRY C DecryptlInit(
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_CBJECT_HANDLE hKey

)

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle; pMechanism
points to the decryption mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key supports
decryption, must be TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt data in a single
part; or call C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to decrypt data
in multiple parts. The decryption operation is active until the application uses a call to
C_Decrypt or C_DecryptFinal to actually obtain the final piece of plaintext. To process additional
data (in single or multiple parts), the application must call C_Decryptlnit again

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example: see C_DecryptFinal.

C_Decrypt

CK_ RV CK_ENTRY C Decrypt (
CK_SESSI ON HANDLE hSessi on,
CK _BYTE_PTR pEncrypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,
CK_ULONG _PTR pul Dat aLen

)

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ulEncryptedDatalen is the length of the encrypted
data; pData points to the location that receives the recovered data; pulDataLen points to the
location that holds the length of the recovered data.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

©
@

FUNCTIONSFUNCTIONSMECHANISMS

age-119213

Page 11¢

C_Decrypt uses the convention described in Section 9.29:2 on producing output.

The decryption operation must have been initialized with C_Decryptlnit. A call to C_Decrypt
always terminates the active decryption operation unless it returns CKR_BUFFER_TOO_SMALL
or is a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the plaintext.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData and pData
point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may
be returned.

C_Decrypt is equivalent to a sequence of C_DecryptUpdate and C_DecryptFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DecryptFinal for an example of similar functions.

C_DecryptUpdate

CK_ RV CK_ENTRY C Decr ypt Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul Part Len

)

C_DecryptUpdate continues a multiple-part decryption operation, processing another encrypted
data part. hSession is the session’s handle; pEncryptedPart points to the encrypted data part;
ulEncryptedPartLen is the length of the encrypted data part; pPart points to the location that
receives the recovered data part; pulPartLen points to the location that holds the length of the
recovered data part.

C_DecryptUpdate uses the convention described in Section 9.29-2 on producing output.
The decryption operation must have been initialized with C_Decryptlnit. This function may be
called any number of times in succession. A call to C_DecryptUpdate which results in an error

other than CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and pPart
point to the same location.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 120214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: See C_DecryptFinal.

C_DecryptFinal

CK RV CK_ENTRY C Decrypt Fi nal (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pLast Part,
CK_ULONG PTR pul Last Part Len

)

C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s handle;
pLastPart points to the location that receives the last recovered data part, if any; pulLastPartLen
points to the location that holds the length of the last recovered data part.

C_DecryptFinal uses the convention described in Section 9.29:2 on producing output.

The decryption operation must have been initialized with C_Decryptinit. A call to
C_DecryptFinal always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or CKR_ENCRYPTED_DATA_LEN_RANGE may
be returned.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED_DATA_INVALID,
CKR_ENCRYPTED_DATA_LEN_RANGE, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

#defi ne O PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT _BUF_SZ 256

CK_ULONG fi rst Encrypt edPi eceLen, secondEncrypt edPi ecelLen;
CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE hKey;
CK BYTE iv[8];
CK_MECHAN SM rrechani sm = {
CKM DES _CBC PAD, iv, sizeof(iv)

b

CK_BYTE dat a[PLAl NTEXT_BUF_SZ7] ;

CK_BYTE encrypt edDat a[O PHERTEXT_BUF_S7] ;
CK_ULONG ul Dat allLen, ul Data2lLen, ul Data3lLen;
K RV rv;

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-121213

Page 121

firstEncryptedPi eceLen = 90;
secondEncr ypt edPi eceLen = O PHERTEXT_BUF_SZ-fi r st Encr ypt edPi ecelLen;
rv = C Decryptlnit(hSession, &rechani sm hKey);
if (rv == GKRX) {
/* Decrypt first piece */
ul Dat alLen = sizeof (data);
rv = C Decrypt Updat e(
hSessi on,
&encrypt edDat a[0], firstEncrypt edPi eceLen,
&dat a[0], &ul Datallen);
if (rv!i= KRX {

}

/* Decrypt second piece */
ul Dat a2Len = si zeof (dat a) - ul Dat allen;
rv = C Decrypt Updat e(
hSessi on,
&encrypt edDat a fi r st Encr ypt edPi eceLen] ,
secondEncr ypt edPi ecelen,
&dat a[ul Dat allLen], &ul Data2?lLen);
if (rv!i= KR X {

}

/[* Get last little decrypted bit */
ul Dat a3Len = si zeof (dat a) - ul Dat allen- ul Dat a2Len;
rv = C Decrypt Final (

hSessi on,

&dat a[ul Dat allLen+ul Dat a2Len], &ul Data3lLen);
if (rv!i= KRX {

9.10 Message digesting functions
Cryptoki provides the following functions for digesting data. All these functions may run in

parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set
to FALSE (check the return code of the function call to see if the function is running in parallel).

C_Digestlnit

CK RV CK_ ENTRY C Digestlnit(
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm

)

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 122214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_Digestlnit initializes a message-digesting operation. hSession is the session’s handle;
pMechanism points to the digesting mechanism.

After calling C_Digestlnit, the application can either call C_Digest to digest data in a single part;
or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data in
multiple parts. The message-digesting operation is active until the application uses a call to
C_Digest or C_DigestFinal to actually obtain the final piece of ciphertext. To process additional
data (in single or multiple parts), the application must call C_Digestlnit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example: see C_DigestFinal.

C_Digest

CK_ RV CK _ENTRY C Di gest (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pD gest,
CK_ULONG PTR pul D gest Len

)

C_Digest digests data in a single part. hSession is the session’s handle, pData points to the data;
ulDatalLen is the length of the data; pDigest points to the location that receives the message digest;
pulDigestLen points to the location that holds the length of the message digest.

C_Digest uses the convention described in Section 9.29:2 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to C_Digest always
terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the message digest.

The input data and digest output can be in the same place, i.e., it is OK if pData and pDigest point
to the same location.

C_Digest is equivalent to a sequence of C_DigestUpdate and C_DigestFinal.
Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal for an example of similar functions.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-123213 | Page 12t

C_DigestUpdate

CK RV CK_ENTRY C _Di gest Updat e(
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pPa rt,
CK_ULONG ul Part Len

)

C_DigestUpdate continues a multiple-part message-digesting operation, processing another data
part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the
data part.

The message-digesting operation must have been initialized with C_Digestlnit. Calls to this
function and C_DigestKey may be interspersed any number of times in any order. A call to
C_DigestUpdate which results in an error terminates the current digest operation.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

C_DigestKey

CK_ RV CK_ENTRY C D gest Key(
CK_SESSI ON HANDLE hSessi on,
CK_CBJECT_HANDLE hKey

)

C_DigestKey continues a multiple-part message-digesting operation by digesting the value of a
secret key. hSession is the session’s handle; hKey is the handle of the secret key to be digested.

The message-digesting operation must have been initialized with C_DigestInit. Calls to this
function and C_DigestUpdate may be interspersed any number of times in any order.

If the value of the supplied key cannot be digested purely for some reason related to its length,
C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_INDIGESTIBLE,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 124214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_DigestFinal

CK_ RV CK _ENTRY C Di gest Fi nal (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pD gest,
CK_ULONG PTR pul D gest Len

)

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message
digest. hSession is the session’s handle; pDigest points to the location that receives the message
digest; pulDigestLen points to the location that holds the length of the message digest.

C_DigestFinal uses the convention described in Section 9.29:2 on producing output.

The digest operation must have been initialized with C_Digestlnit. A call to C_DigestFinal
always terminates the active digest operation unless it returns CKR_BUFFER_TOO_SMALL or is
a successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the message digest.

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_MECHAN SM rrechani sm = {
CKM MD5, NULL_PTR O

%];(_BYTE data[] ={...};
CK_BYTE di gest[16];

CK_ULONG ul D gest Len;
K RV rv;

.rv = C_Digestlnit(hSession, &mrechanisn;
if (rv!= KRX {

}

rv = C D gest Updat e(hSessi on, data, sizeof(data));
if (rv!= KRX {

}

rv = C D gest Key(hSessi on, hKey);
if (rv!= KRX {

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS

©
@

age-125213

Page 12¢

}

ul Di gest Len = si zeof (di gest);
rv = C D gestFinal (hSession, digest, &ul D gestlLen);

9.11 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki, these
operations also encompass message authentication codes). All these functions may run in parallel
with the application if the session was opened with the CKF_SERIAL_SESSION flag set to
FALSE (check the return code of the function call to see if the function is running in parallel).

C_Signlnit

CK RV CK_ ENTRY C Signlnit(
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_CBJECT_HANDLE hKey

)

C_SignlInit initializes a signature operation, where the signature is an appendix to the data.
hSession is the session’s handle; pMechanism points to the signature mechanism; hKey is the handle
of the signature key.

The CKA _SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be TRUE.

After calling C_Signlnit, the application can either call C_Sign to sign in a single part; or call
C_SignUpdate one or more times, followed by C_SignFinal, to sign data in multiple parts. The
signature operation is active until the application uses a call to C_Sign or C_SignFinal to actually
obtain the signature. To process additional data (in single or multiple parts), the application must
call C_SignlInit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example: see C_SignFinal.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 126214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_Sign

CK_RV CK_ENTRY C_Si gn(
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG PTR pul Si gnat ur eLen
)

C_Sign signs data in a single part, where the signature is an appendix to the data. hSession is the
session’s handle; pData points to the data; ulDatalLen is the length of the data; pSignature points to
the location that receives the signature; pulSignatureLen points to the location that holds the length
of the signature.

C_Sign uses the convention described in Section 9.29-2 on producing output.

The signing operation must have been initialized with C_Signlnit. A call to C_Sign always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the signature.

C_Sign is equivalent to a sequence of C_SignUpdate and C_SignFinal.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_SignFinal for an example of similar functions.

C_SignUpdate

CK_ RV CK_ENTRY C_Si gnUpdat e(
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len

)

C_SignUpdate continues a multiple-part signature operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data
part.

The signature operation must have been initialized with C_Signlnit. This function may be called
any number of times in succession. A call to C_SignUpdate which results in an error terminates
the current signature operation.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-127213

Page 12i

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_SignFinal.

C_SignFinal

CK_ RV CK_ENTRY C _Si gnFi nal (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG PTR pul Si gnat ur eLen

)

C_SignFinal finishes a multiple-part signature operation, returning the signature. hSession is the
session’s handle; pSignature points to the location that receives the signature; pulSignaturelLen
points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 9.29-2 on producing output.

The signing operation must have been initialized with C_Signlnit. A call to C_SignFinal always
terminates the active signing operation unless it returns CKR_BUFFER_TOO_SMALL or is a
successful call (i.e., one which returns CKR_OK) to determine the length of the buffer needed to
hold the signature.

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_CBJECT_HANDLE hKey;

CK_MECHAN SM rrechani sm = {
CKM DES MAC, NULL_PTR O

b

CK BYTE data[] ={...};
CK _BYTE nac[4] ;
CK_ULONG ul MacLen;

K RV rv;

.rv = C_Signlnit(hSession, &mrechanism hKey);
if (rv == KRX) {
rv = C SignUpdat e(hSession, data, sizeof(data));

iJI MacLen = si zeof (mac);
rv = C SignFinal (hSession, nmac, &ul MaclLen);

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 128214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_SignRecoverlnit

CK_ RV CK_ENTRY C _Si gnRecover | nit(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_CBJECT_HANDLE hKey

)

C_SignRecoverlnit initializes a signature operation, where the data can be recovered from the
signature. hSession is the session’s handle; pMechanism points to the structure that specifies the
signature mechanism; hKey is the handle of the signature key.

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the key
supports signatures where the data can be recovered from the signature, must be TRUE.

After calling C_SignRecoverlnit, the application may call C_SignRecover to sign in a single part.
The signature operation is active until the application uses a call to C_SignRecover to actually
obtain the signature. To process additional data in a single part, the application must call
C_SignRecoverlnit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_ACTIVE, CKR_USER_NOT_LOGGED _IN.

Example: see C_SignRecover.

C_SignRecover

CK_ RV CK_ENTRY C_Si gnRecover (

CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG PTR pul Si gnat ur eLen

)

C_SignRecover signs data in a single operation, where the data can be recovered from the
signature. hSession is the session’s handle; pData points to the data; uLDatalen is the length of the
data; pSignature points to the location that receives the signature; pulSignatureLen points to the
location that holds the length of the signature.

C_SignRecover uses the convention described in Section 9.29-2 on producing output.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-129213

Page 12¢

The signing operation must have been initialized with C_SignRecoverlnit. A call to
C_SignRecover always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the signature.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_ACTIVE.

Example:
CK_SESSI ON_ HANDLE hSessi on;

OK_MECHANI SM rrechani sm = {
OKM RSA 9796, NULL_PTR 0

CK BYTE data[] = {...};
CK_BYTE si gnat ure[128] ;

CK_ULONG ul Si gnat urelLen;
CK RV rv;

rv = C SignRecoverlnit(hSession, &rechanism hKey);
if (rv == CKRX) {
usSi gnat ureLen = si zeof (signature);
rv = C_Si gnRecover (
hSessi on, data, sizeof(data), signature, &usSignaturelen);
if (rv ==CKR X {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 130214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

9.12 Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the purposes of
Cryptoki, these operations also encompass message authentication codes). All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function call to see if the
function is running in parallel).

C_Verifylnit

CK RV CK_ ENTRY C Verifylnit(
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_CBJECT_HANDLE hKey

)

C_Verifylnit initializes a verification operation, where the signature is an appendix to the data.
hSession is the session’s handle; pMechanism points to the structure that specifies the verification
mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key supports
verification where the signature is an appendix to the data, must be TRUE.

After calling C_Verifylnit, the application can either call C_Verify to verify a signature on data
in a single part; or call C_VerifyUpdate one or more times, followed by C_VerifyFinal, to verify
a signature on data in multiple parts. The verification operation is active until the application
calls C_Verify or C_VerifyFinal. To process additional data (in single or multiple parts), the
application must call C_Verifylnit again.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example: see C_VerifyFinal.

C_Verify

CK RV CK_ENTRY C Veri fy(
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,

CK _BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-131213 | Page 13!

C_Verify verifies a signature in a single-part operation, where the signature is an appendix to the
data. hSession is the session’s handle; pData points to the data; ulDatalen is the length of the data;
pSignature points to the signature; ulSignatureLen is the length of the signature.

The verification operation must have been initialized with C_Verifylnit. A call to C_Verify
always terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied
signature is invalid). If the signature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
signing operation is terminated.

C_Verify is equivalent to a sequence of C_VerifyUpdate and C_VerifyFinal.

Return values: CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_PARALLEL, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example: see C_VerifyFinal for an example of similar functions.

C_VerifyUpdate

CK RV CK_ENTRY C Veri f yUpdat e(
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len

)

C_VerifyUpdate continues a multiple-part verification operation, processing another data part.
hSession is the session’s handle, pPart points to the data part; ulPartLen is the length of the data
part.

The verification operation must have been initialized with C_Verifylnit. This function may be
called any number of times in succession. A call to C_VerifyUpdate which results in an error
terminates the current verification operation.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 132214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_VerifyFinal

CK_ RV CK _ENTRY C Veri fyFinal (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen

)

C_VerifyFinal finishes a multiple-part verification operation, checking the signature. hSession is
the session’s handle; pSignature points to the signature; ulSignatureLen is the length of the
signature.

The verification operation must have been initialized with C_Verifylnit. A call to C_VerifyFinal
always terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied
signature is invalid). If the signature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
verifying operation is terminated.

Return values: CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_CBJECT_HANDLE hKey;

CK_MECHAN SM rrechani sm = {
CKM DES MAC, NULL_PTR 0

%];(_BYTE data[] ={...};

CK _BYTE nacl[4] ;
K RV rv;

.rv = C Verifylnit(hSession, &mrechanism hKey);
if (rv == KRX {
rv = C VerifyUpdat e(hSession, data, sizeof(data));

.rv = C Veri fyFinal (hSessi on, mac, sizeof(nac));

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-133213 | Page 13t

C_VerifyRecoverlnit

CK RV CK _ENTRY C VerifyRecoverlnit(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_CBJECT_HANDLE hKey

)

C_VerifyRecoverlnit initializes a signature verification operation, where the data is recovered
from the signature. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates whether the key
supports verification where the data is recovered from the signature, must be TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify a
signature on data in a single part. The verification operation is active until the application uses a
call to C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example: see C_VerifyRecover.

C_VerifyRecover

CK RV CK_ENTRY C Veri fyRecover (
CK_SESSI ON HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen,
CK_BYTE_PTR pDat a,

CK_ULONG _PTR pul Dat aLen

)

C_VerifyRecover verifies a signature in a single-part operation, where the data is recovered from
the signature. hSession is the session’s handle; pSignature points to the signature; ulSignaturelLen is
the length of the signature; pData points to the location that receives the recovered data; and
pulDatalen points to the location that holds the length of the recovered data.

C_VerifyRecover uses the convention described in Section 9.29:2 on producing output.
The verification operation must have been initialized with C_VerifyRecoverlnit. A call to
C_VerifyRecover always terminates the active verification operation unless it returns

CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the recovered data.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 134214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

A successful call to C_VerifyRecover should return either the value CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the supplied
signature is invalid). If the signature can be seen to be invalid purely on the basis of its length,
then CKR_SIGNATURE_LEN RANGE should be returned. The return codes
CKR_SIGNATURE_INVALID and CKR_SIGNATURE_LEN_RANGE have a higher priority than
the return code CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE,
CKR_SIGNATURE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE hKey;
CK_MECHAN SM rrechani sm = {

CKM RSA 9796, NULL_PTR, O
I

CK BYTE data[] ={...};
CK_ULONG ul Dat aLen;
CK_BYTE si gnat ure[128] ;
K RV rv;

rv = C VerifyRecoverlnit(hSession, &rechanism hKey);
if (rv == KRX) {
ul Dat aLen = si zeof (dat a);
rv = C VerifyRecover (
hSessi on, signature, sizeof(signature), data, &ul Datalen);

9.13 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid unnecessarily
passing data back and forth to and from a token. All these functions may run in parallel with the
application if the session was opened with the CKF_SERIAL_SESSION flag set to FALSE (check
the return code of the function call to see if the function is running in parallel).

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

©
@

FUNCTIONSFUNCTIONSMECHANISMS

age-135213 | Page 13t

C_DigestEncryptUpdate

CK_ RV CK_ENTRY C _Di gest Encr ypt Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE PTR pPart,

CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart ,
CK_ULONG _PTR pul Encrypt edPart Len

)

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing
another data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the
length of the data part; pEncryptedPart points to the location that receives the digested and
encrypted data part; pulEncryptedPart points to the location that holds the length of the encrypted
data part.

C_DigestEncryptUpdate uses the convention described in Section 9.29-2 on producing output.

Digest and encryption operations must both be active (they must have been initialized with
C_Digestlnit and C_Encryptlnit, respectively). This function may be called any nhumber of times
in succession, and may be interspersed with C_DigestUpdate, C_DigestKey, and
C_EncryptUpdate calls (it would be somewhat unusual to intersperse calls to
C_DigestEncryptUpdate with calls to C_DigestKey, however).

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON_ HANDLE hSessi on;

CK_CBJECT_HANDLE hKey;

CK BYTE iv[8];

CK_MECHAN SM di gest Mechani sm = {
CKM MD5, NULL_PTR O

b

CK_MECHAN SM encrypt i onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

b

CK_BYTE encrypt edDat a[BUF_S7] ;

CK_ULONG ul Encrypt edDat aLen;

CK _BYTE di gest [16];

CK_ULONG ul D gest Len;

CK_BYTE dat a[(2*BUF_SZ) +8] ;

K RV rv;

int i;

ﬁem;et(iv, 0, sizeof (iv));
menset (data, ‘A, ((2*BUF_SZ)+5));

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 136214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

rv = C Encryptlnit(hSession, &encryptionMechani sm hKey);
if (rv!i= KRX {

}
rv = C D gestlnit(hSession, &digestMechanisnj;
if (rv!= KRX {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C D gest Encrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat alLen) ;

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C D gest Encrypt Updat e(

hSessi on,

&dat a[BUF_S7], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat alLen) ;

/-k
* The last portion of the buffer needs to be handled with

* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the digest on the buffer */
rv = C D gest Updat e(hSessi on, &data] BUF_S7*2], 5);

iJI D gestLen = si zeof (di gest);
rv = C D gestFinal (hSession, digest, &ul D gestlLen);

/* Then, pad last part with 3 0x00 bytes, and conpl ete encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0x00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen) ;

/* Cet last piece of ciphertext (should have length 0, here) */

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-137213

Page 13i

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C Encrypt Fi nal (hSessi on, encryptedData, &ul EncryptedDatalen);

C_DecryptDigestUpdate

CK_ RV CK_ENTRY C Decrypt D gest Updat e(
CK_SES SI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart ,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,

CK_ULONG _PTR pul Part Len

)

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest operation,
processing another data part. hSession is the session’s handle; pEncryptedData points to the
encrypted data; ulEncryptedDatalLen is the length of the encrypted data; pData points to the
location that receives the recovered data; pulDatalen points to the location that holds the length of
the recovered data.

C_DecryptDigestUpdate uses the convention described in Section 9.29-2 on producing output.

Decryption and digesting operations must both be active (they must have been initialized with
C_Decryptlnit and C_Digestlnit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and
C_DigestKey calls (it would be somewhat unusual to intersperse calls to
C_DigestEncryptUpdate with calls to C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is because
when C_DigestEncryptUpdate is called, precisely the same input is passed to both the active
digesting operation and the active encryption operation; however, when
C_DecryptDigestUpdate is called, the input passed to the active digesting operation is the output
of the active decryption operation. This issue comes up only when the mechanism used for
decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext
with DES in CBC mode with PKCS padding. Consider an application which will simultaneously
decrypt this ciphertext and digest the original plaintext thereby obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns
exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext
coming, or if the last block of ciphertext held any padding. These 16 bytes of plaintext are passed
into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that
there’s no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However,
since the active decryption and digesting operations are linked only through the
C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to be digested.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 138214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

A call to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of the
plaintext, not the message digest of the entire plaintext. It is crucial that, before C_DigestFinal is
called, the last 2 bytes of plaintext get passed into the active digesting operation.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the active
digesting operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptDigestUpdate

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON HANDLE hSessi on;

CK_CBJECT_HANDLE hKey;

CK BYTE i v[8];

CK_MECHAN SM decr ypt i onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

b

CK_MECHAN SM di gest Mechani sm = {
CKM M5, NULL_PTR O

b

CK _BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK _BYTE di gest [16];

CK_ULONG ul D gest Len;

CK _BYTE dat a[| BUF_SZ7] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV rv;

nmenset (iv, 0, sizeof(iv));

nmenset (encryptedbata, ‘A, ((2*BUF_SZ2)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm hKey);
if (rv!= KRXK) {

rv = CDagestlnit

(hSessi on, &di gest Mechani s ;
if (rv!= KR XK){

}

ul Dat aLen = si zeof (data);

rv = C Decrypt D gest Updat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul Datalen);

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-139213 | Page 13¢

ul Dat aLen = si zeof (dat a);

rv = C Decrypt D gest Updat e(
hSessi on,
&encr ypt edDat a[BUF_SZ], BUF_SZ,
data, &ul datalen);

/-k
* The last portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (dat a);
rv = C Decrypt Updat e(

hSessi on,

&encr ypt edDat a[BUF_S7*2], 8,

data, &ul Last Updat eSi ze);

/* Get last piece of plaintext (should have | ength 0, here) */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C Decrypt Fi nal (hSessi on, &dat af ul Last Updat eSi ze], &ul Dat aLen);
if (rv!= KRX {

}

/* Digest last bit of plaintext */
rv = C D gest Updat e(hSessi on, &data] BUF_S7*2], 5);
if (rv!= KRX {

ul Di gest Len = si zeof (di gest);
rv = C D gestFinal (hSession, digest, &ul D gestlLen);
if (rv!= KRX {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 140214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_SignEncryptUpdate

CK_ RV CK_ENTRY C_Si gnEncr ypt Updat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart ,
CK_ULONG _PTR pul Encrypt edPart Len

)

C_SignEncryptUpdate continues a multiple-part combined signature and encryption operation,
processing another data part. hSession is the session’s handle; pPart points to the data part;
usPartLen is the length of the data part; pEncryptedPart points to the location that receives the
digested and encrypted data part; and pusEncryptedPart points to the location that holds the
length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 9.29:2 on producing output.

Signature and encryption operations must both be active (they must have been initialized with
C_Signtlnit and C_Encryptlnit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate calls.

Return values; CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK BYTE iv[8];
CK_MECHAN SM si gnMechani sm = {
CKM DES MAC, NULL_PTR O
b
CK_MECHAN SM encrypt i onMechani sm = {
CKM DES ECB, iv, sizeof(iv)
I
CK_BYTE encrypt edDat a[| BUF_S7] ;
CK_ULONG ul Encrypt edDat aLen;
CK_BYTE MA(4] ;
CK_ULONG ul MacLen;
CK_BYTE dat a[(2*BUF_SZ) +8] ;
K RV rv;
int i;

menset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_S2)+5));

rv = C Encryptlnit(hSession, &encryptionMechani sm hEncrypti onKey);
if (rv!i= KRX {

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-141213 | Page 14!

}
rv = C Signlnit(hSession, &signMechani sm hMacKey);
if v I= KR {

r

el

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat alLen) ;

ul Encr ypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[BUF_S7], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen) ;

/-k
* The last portion of the buffer needs to be handled with

* separate calls to deal with padding issues in ECB node
*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &data[BUF_S7*2], 5);

iJI MacLen = si zeof (MAQ) ;
rv = C D gestFinal (hSession, MAC, &ul MaclLen);

/* Then pad last part with 3 0x00 bytes, and conplete encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5) +i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C _Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat alLen) ;

/* Cet last piece of ciphertext (should have length 0, here) */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C Encrypt Fi nal (hSessi on, encryptedData, &ul EncryptedDatalen);

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 142214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_DecryptVerifyUpdate

CK RV CK_ENTRY C Decrypt Veri f yUpdat e(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart ,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,

CK_ULONG PTR pul Part Len

)

C_DecryptVerifyUpdate continues a multiple-part combined decryption and verification
operation, processing another data part. hSession is the session’s handle; pEncryptedData points to
the encrypted data; ulEncryptedDatalen is the length of the encrypted data; pData points to the
location that receives the recovered data; and pulDatalLen points to the location that holds the
length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 9.29:2 on producing output.

Decryption and signature operations must both be active (they must have been initialized with
C_Decryptlnit and C_Verifylnit, respectively). This function may be called any number of times
in succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when using
C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This is because when
C_SignEncryptUpdate is called, precisely the same input is passed to both the active signing
operation and the active encryption operation; however, when C_DecryptVerifyUpdate is called,
the input passed to the active verifying operation is the output of the active decryption operation.
This issue comes up only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte plaintext
with DES in CBC mode with PKCS padding. Consider an application which will simultaneously
decrypt this ciphertext and verify a signature on the original plaintext thereby obtained.

After initializing decryption and verification operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns exactly
16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s more ciphertext coming,
or if the last block of ciphertext held any padding. These 16 bytes of plaintext are passed into the
active verification operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells Cryptoki that
there’s no more ciphertext coming, and the call returns the last 2 bytes of plaintext. However,
since the active decryption and verification operations are linked only through the
C_DecryptVerifyUpdate call, these 2 bytes of plaintext are not passed on to the verification
mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is a valid
signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucial that, before

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-143213

Page 14:

C_VerifyFinal is called, the last 2 bytes of plaintext get passed into the active verification
operation.

Because of this, it is critical that when an application uses a padded decryption mechanism with
C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the active
verification operation. Extreme caution is warranted when using a padded decryption mechanism with
C_DecryptVerifyUpdate

Return values: CKR_BUFFER_TOO_SMALL, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:
#define BUF_SZ 512

CK_SESSI ON HANDLE hSessi on;
CK_CBJECT_HANDLE hDecrypti onKey, hMacKey;
CK BYTE i v[8];
CK_MECHAN SM decr ypt i onMechani sm = {
CKM DES ECB, iv, sizeof(iv)
b
CK_MECHAN SM veri f yMechani sm = {
CKM DES MAC, NULL_PTR O
}
CK _BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE MA(4] ;
CK_ULONG ul MacLen;
CK _BYTE dat a[| BUF_SZ7] ;
CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV rv;

nmenset (iv, 0, sizeof(iv));

nmenset (encryptedbata, ‘A, ((2*BUF_SZ2)+8));

rv = C Decryptlnit(hSession, &ecryptionMechani sm hDecrypti onKey);
if (rv!= KR {

}
rv = CVerifylnit

(hSessi on, &verifyMechani sm hMacKey);
if (rv!= KR XK){

}

ul Dat aLen = si zeof (data);

rv = C Decrypt Veri fyUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
data, &ul Datalen);

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 144214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

ul Dat aLen = si zeof (dat a);

rv = C Decrypt Veri fyUpdat e(
hSessi on,
&encr ypt edDat a[BUF_SZ], BUF_SZ,
data, &ul datalen);

/-k
* The last portion of the buffer needs to be handled with
* separate calls to deal with padding issues in ECB node
*/

/[* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (dat a);
rv = C Decrypt Updat e(

hSessi on,

&encr ypt edDat a[BUF_S7*2], 8,

data, &ul Last Updat eSi ze);

/[* CGet last little piece of plaintext. Should have length 0 */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C Decrypt Fi nal (hSessi on, &dat af ul Last Updat eSi ze], &ul Dat aLen);
if (rv!= KRX {

}

/* Send last bit of plaintext to verification operation */
rv = C VerifyUpdat e(hSessi on, &data] BUF_S7*2], 5);
if (rv!= KRX {

}
rv = C VerifyFi nal (hSession, MAC ul MaclLen);
if (rv == CKR_SI GNATURE | NVALID) {

9.14 Key management functions
Cryptoki provides the following functions for key management. All these functions may run in

parallel with the application if the session was opened with the CKF_SERIAL_SESSION flag set
to FALSE (check the return code of the function call to see if the function is running in parallel).

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS Page-145213 | Page 14¢

C_GenerateKey

CK_ RV CK_ENTRY C Cener at eKey(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_CBJECT_HANDLE PTR phKey

)

C_GenerateKey generates a secret key, creating a new key object. hSession is the session’s handle;
pMechanism points to the key generation mechanism; pTemplate points to the template for the new
key; ulCount is the number of attributes in the template; phKey points to the location that receives
the handle of the new key.

Since the type of key to be generated is implicit in the key generation mechanism, the template
does not need to supply a key type. If it does supply a key type which is inconsistent with the
key generation mechanism, C_GenerateKey fails and returns the error code
CKR_TEMPLATE_INCONSISTENT. The CKA CLASS attribute is treated similarly.

The key object created by a successful call to C_GenerateKey will have its CKA_LOCAL
attribute set to TRUE.

Return values; CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
OPERATION_ACTIVE, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE hKey;
CK_MECHAN SM rrechani sm = {

CKM DES KEY GEN, NULL_PTR O
b
CK RV rv;

.rv = C _Cener at eKey(hSessi on, &mrechanism NJULL_PTR 0, &hKey);
if (rv == KR X {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 146214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

C_GenerateKeyPair

CK_ RV CK_ENTRY C Gener at eKeyPai r (
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i ckeyTenpl at e,
CK_ULONG ul Publ i cKeyAt tri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Pri vat eKeyAttri but eCount ,
CK_OBJECT_HANDLE PTR phPubl i cKey,
CK_OBJECT_HANDLE PTR phPri vat eKey

)

C_GenerateKeyPair generates a public/private key pair, creating new key objects. hSession is the
session’s handle; pMechanism points to the key generation mechanism; pPublicKeyTemplate points
to the template for the public key; ulPublicKeyAttributeCount is the number of attributes in the
public-key template; pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template; phPublicKey
points to the location that receives the handle of the new public key; phPrivateKey points to the
location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism, the
templates do not need to supply key types. If one of the templates does supply a key type which
is inconsistent with the key generation mechanism, C_GenerateKeyPair fails and returns the
error code CKR_TEMPLATE_INCONSISTENT. The CKA CLASS attribute is treated similarly.

The key objects created by a successful call to C_GenerateKeyPair will have their CKA_LOCAL
attributes set to TRUE.

Return values; CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
OPERATION_ACTIVE, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPri vat eKey;
CK_MECHAN SM nechani sm = {
CKM RSA PKCS KEY_PAIR GEN, NULL_PTR, O
b
CK_ULONG nodul usBits = 768;
CK_BYTE publ i cExponent[] = { 3 };
CK BYTE subject[] ={...};
CK BYTE id[] = {123};
CK BBOOL true = TRUE
CK_ATTRI BUTE publ i cKeyTenpl ate[] = {
{ KA _ENCRYPT, & rue, sizeof(true)},
{CKA VER FY, &rue, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA_ MDULUS BI TS, &nodul usBits, sizeof (nodul usBits)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-147213

Page 14:

{ CKA_PUBLI C_EXPONENT, publicExponent, sizeof (publicExponent)}

I
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA TCKEN, &true, sizeof(true)},
{CKA PR VATE, &rue, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, & rue, sizeof(true)},
{ KA DECRYPT, &t rue, sizeof(true)},
{CKA SI@Q\, &rue, sizeof(true)},
{CKA_UNVRAP, &t rue, sizeof(true)}
b
CK RV rv;
rv = C Generat eKeyPai r (
hSessi on, &mrechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&hPubl i cKey, &hPrivat eKey);
if (rv == CKR.XK) {

C_WrapKey

CK_ RV CK_ENTRY C W apKey(
CK_SESSI ON HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngkey,
CK_CBJECT_HANDLE hKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG _PTR pul W appedKeyLen

)

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle;
pMechanism points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key;
hKey is the handle of the key to be wrapped; pWrappedKey points to the location that receives the
wrapped key; and pulWrappedKeyLen points to the location that receives the length of the
wrapped key.

C_WrapKey uses the convention described in Section 9.29:2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports
wrapping, must be TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped must
also be TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its
CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and
mechanism solely because of its length, then C_WrapKey fails with error code
CKR_KEY_SIZE_RANGE.

C_WrapKey can a priori be used in the following situations:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 148214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

To wrap any secret key with an RSA public key.

To wrap any secret key with any other secret key which is not a SKIPJACK, BATON, or
JUNIPER key.

To wrap a SKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON, or
JUNIPER key (the two keys need not be the same type of key).

To wrap an RSA, Diffie-Hellman, or DSA private key with any secret key which is not a
SKIPJACK, BATON, or JUNIPER key.

To wrap a KEA or DSA private key with a SKIPJACK key.

Of course, tokens vary in which speeified-types of keys can actually be wrapped with which
mechanisms.

Return Values: CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE,
CKR_KEY_UNEXTRACTABLE, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPING_KEY _HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE_RANGE, CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHAN SM rrechani sm = {
CKM DES3_ECB, NULL_PTR, O
I
CK_BYTE w appedKey] 8] ;
CK_ULONG ul W appedKeyLen;
K RV rv;

ul WappedKeyLen = si zeof (w appedKey) ;
rv = C_WapKey(

hSessi on, &mrechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeylLen);
if (rv == CKRX) {

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-149213

Page 14¢

C_UnwrapKey

CK_ RV CK_ENTRY C_Unwr apKey(
CK_SESSI ON HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedkKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_CBJECT_HANDLE PTR phKey

)

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret key
object. hSession is the session’s handle; pMechanism points to the unwrapping mechanism;
hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key;
ulWrappedKeyLen is the length of the wrapped key; pTemplate points to the template for the new
key; ulAttributeCount is the number of attributes in the template; phKey points to the location that
receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, must be TRUE.

The new key will have the CKA_ALWAYS SENSITIVE attribute set to FALSE, and the

CKA_EXTRACTABLE attribute set to TRUE.—Hthetemplatefor—the new key has—the
CKR_TFEMPLATEINCONSISTENT-

When C_UnwrapKey is used to unwrap a key with the CKM_KEY_WRAP_SET_OAEP
mechanism (see Section 10.32.110-32:1), additional “extra data” is decrypted at the same time that
the key is unwrapped. The return of this data follows the convention in Section 9.29-2 on
producing output. If the extra data is not returned from a call to C_UnwrapKey (either because
the call was only to find out how large the extra data is, or because the buffer provided for the
extra data was too small), then C_UnwrapKey will not create a new key, either.

The key object created by a successful call to C_UnwrapKey will have its CKA_LOCAL attribute
set to FALSE.

Return values; CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED _IN,
CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHAN SM rrechani sm = {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 150214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKM DES3_ECB, NULL_PTR, O
I
CK BYTE w appedKey[8] = {...};
CK_OBJECT_CLASS keyd ass = CKO SECRET_KEY,;
CK_KEY_TYPE keyType = CKK _DES;
CK BBOOL true = TRUE
CK_ATTRI BUTE tenplate[] = {
{ KA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &t rue, sizeof(true)},
{ CKA DECRYPT, &t rue, sizeof(true)}
I
CK RV rv;

rv = C_Unw apKey(

hSessi on, &mrechani sm hUnw appi ngKey,

wr appedKey, sizeof (w appedKey), tenplate, 4, &hKey);
if (rv == KRX {

C_DeriveKey

CK_ RV CK_ENTRY C Deri veKey(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHAN SM PTR pMechani sm
CK_OBJECT_HANDLE hBasekKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_CBJECT_HANDLE PTR phKey

)

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the session’s
handle; pMechanism points to a structure that specifies the key derivation mechanism; hBaseKey is
the handle of the base key; pTemplate points to the template for the new key; ulAttributeCount is
the number of attributes in the template; and phKey points to the location that receives the handle
of the derived key.

The values of the CK_SENSITIVE, CK_ALWAYS_SENSITIVE, CK_EXTRACTABLE, and
CK_NEVER_EXTRACTABLE attributes for the base key affect the values that these attributes
can hold for the newly-derived key. See the description of each particular key-derivation
mechanism in Section 1018 for any constraints of this type.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL attribute
set to FALSE.

Return values: CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALUE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL,
CKR_KEY_HANDLE_INVALID, CKR_KEY_TYPE_INCONSISTENT, CKR_KEY_SIZE_RANGE,

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-151213

Page 15

CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_CBJECT_HANDLE hPubl i cKey, hPrivat eKey, hKey;
OK_MECHANI SM keyPai r Mechani sm = {

CKM DH PKCS KEY_PAIR GEN, NULL_PTR, O

} .
CK BYTE prime[] ={...};
CK_BYTE base[] ={...};
CK_BYTE publ i cVal ue[128]
CK_BYTE ot her Publ i cVal ue[128] ;
CK_MECHAN SM rrechani sm = {
CKM DH PKCS DER VE, ot herPublicVal ue, sizeof (ot herPublicVal ue)

3
CK_ATTRI BUTE pTenpl ate[] = {
CKA VALUE, &publicVal ue, sizeof (publicVal ue)}

} .
CK_OBJECT_CLASS keyd ass = CKO SECRET_KEY,;
CK_KEY_TYPE keyType = CKK_DES;
CK BBOOL true = TRUE
CK_ATTRI BUTE publ i cKeyTenpl ate[] = {
{CKA PRI ME, prine, sizeof(prime)},
{ KA BASE, base, sizeof (base)}

I
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA DER VE, & rue, sizeof(true)}

I

CK_ATTRI BUTE tenplate[] = {
{ KA CLASS, &keyd ass, sizeof (keyd ass)},
{ OKA_KEY_TYPE, &keyType, sizeof (keyType)},
{ OKA_ENCRYPT, &true, sizeof(true)},
{ CKA DECRYPT, &t rue, sizeof(true)}

I

K RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &keyPai r Mechani sm
publ i ckeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&hPubl i cKey, &hPrivat eKey);
i f (rv = KR XK) {
rv = C GetAttributeVal ue(hSessi on, hPublicKey, &pTenplate, 1);
if (rv == KRX {
/* Put other guy’s public value in otherPublicVal ue */

rv = C DeriveKey(
hSessi on, &nmrechani sm
hPri vat eKey, tenplate, 4, &hKey);
if (rv == CKRX {

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 152214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

9.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers. All these functions
may run in parallel with the application if the session was opened with the
CKF_SERIAL_SESSION flag set to FALSE (check the return code of the function call to see if the
function is running in parallel).

C_SeedRandom

CK RV CK_ENTRY C_SeedRandon{(
CK_SESSI ON HANDLE hSessi on,
CK _BYTE_PTR pSeed,
CK_ULONG ul SeedLen

)

C_SeedRandom mixes additional seed material into the token’s random number generator.
hSession is the session’s handle; pSeed points to the seed material; and ulSeedLen is the length in
bytes of the seed material.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL, CKR_OPERATION_ACTIVE,
CKR_RANDOM_SEED_NOT_SUPPORTED, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

The return code CKR_RANDOM NO_RNG has a higher priority than the return code
CKR_RANDOM _SEED NOT_SUPPORTED. That is, if the token doesn’t have a random number
generator, then C_SeedRandom will return the value CKR_RANDOM_NO_RNG.

Example: see C_GenerateRandom.

C_GenerateRandom

CK RV CK_ENTRY C Gener at eRandon{
CK_SESSI ON HANDLE hSessi on,
CK _BYTE_PTR pRandonDat a,
CK_ULONG ul Randonien

)

C_GenerateRandom generates random data. hSession is the session’s handle; pRandomData points
to the location that receives the random data; and ulRandomLen is the length in bytes of the
random data to be generated.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMEESHANISMS Page-153213

Page 15:

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_PARALLEL, CKR_OPERATION_ACTIVE,
CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK BYTE seed[] ={...};

CK BYTE randonbData[] = {...};
K RV rv;

.rv = C_SeedRandon{ hSessi on, seed, sizeof(seed));
if (rv!= KRX {

}
rv = C CGener at eRandonm(hSessi on, randonbData, sizeof (randonbata));
if (rv == CKRX) {

9.16 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of cryptographic
functions:

C_GetFunctionStatus

CK RV CK_ENTRY C Get Functi onSt at us(
CK_SESSI ON HANDLE hSessi on
)

C_GetFunctionStatus obtains the status of a function running in parallel with an application.
hSession is the session’s handle.

If there is currently a function running in parallel in the specified session, C_GetFunctionStatus
returns CK_FUNCTION_PARALLEL. If the most recently-executed Cryptoki function other than
C_GetFunctionStatus that was called in the specified session was not executed in parallel (or if
no Cryptoki function other than C_GetFunctionState has been called in the specified session),
then C_GetFunctionStatus returns CK_FUNCTION_NOT_PARALLEL. Otherwise,
C_GetFunctionState returns the return value of whatever the last parallel function executed in
the specified session was.

Typically, an application might call this function repeatedly when a function is executing in

parallel. Eventually, once the function has finished its execution, the return value of
C_GetFunctionStatus will no longer be CKR_FUNCTION_PARALLEL; instead, it will be the

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 154214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

return code of the function. Because of the way C_GetFunctionState’s behavior is defined above,
repeated calls to C_GetFunctionStatus will all yield the same return code of the function (until
some other Cryptoki function is called in the specified session).

Note that the application will also receive a CKN_COMPLETE notification callback when the
function completes its parallel execution, assuming that the session the function is running in was
opened with callbacks.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_NOT_PARALLEL, CKR_FUNCTION_PARALLEL, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

In addition to the return values listed above, once the function executing in parallel is finished
executing, calls to C_GetFunctionStatus will return whatever the error return of the parallel

function was.

Example: see C_CancelFunction.

C_CancelFunction

CK_ RV CK_ENTRY C _Cancel Functi on(
CK_SESSI ON_ HANDLE hSessi on
)

C_CancelFunction cancels a function running in parallel with an application. hSession is the
session’s handle.

Note that C_CancelFunction cannot be used to cancel a function which is not running in parallel.
For example, consider an application which consists of two threads, one of which is executing a
(slow) C_GenerateKeyPair in session 1, which is a serial session. If the other thread attempts to
cancel the C_GenerateKeyPair call with C_CancelFunction, the C_CancelFunction call may
block until the C_GenerateKeyPair call is done, and then return the value
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_NOT_PARALLEL, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPri vat eKey;
CK_MECHAN SM rrechani sm = {

CKM RSA PKCS KEY_ PAIR GEN. NULL_PTR 0
b

CK_ULONG nodul usBits = 768;

CK_BYTE publ i cExponent[] = {...};

CK BYTE subject[] ={...};

CK BYTE id[] = {123};

CK BBOOL true = TRUE

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {
{ KA _ENCRYPT, &t rue, sizeof(true)},
{CKA VER FY, &rue, sizeof(true)},

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

FUNCTIONSFUNCTIONSMECHANISMS

©
@

age-155213

Page 15¢

{CKA WRAP, &true, sizeof(true)},
{CKA_MDULUS BITS, &nodul usBits, sizeof (nodul usBits)},
{ CKA_PUBLI C_EXPONENT, publ i cExponent, sizeof (publicExponent)}

I
CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA TCKEN, &true, sizeof(true)},
{CKA PR VATE, &rue, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI TIVE, & rue, sizeof(true)},
{ KA DECRYPT, &t rue, sizeof(true)},
{CKA SI@Q\, &rue, sizeof(true)},
{CKA_UNVRAP, &t rue, sizeof(true)}
b
CK RV rv;

rv = C Generat eKeyPai r (
hSessi on, &mrechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&hPubl i cKey, &hPrivat eKey);
while (rv == CKR_FUNCTI ON_PARALLEL) ({
/* Check if user wants to cancel function */
if (kbhit()) {
if (getch() == 27) { /* If user hit ESCape key */
rv = C _Cancel Functi on(hSessi on);

}
}

/* Performother tasks or delay */

.rv = C_Get Functi onSt at us(hSessi on);
}

9.17 Callback functions

Cryptoki uses function pointers of type CK_NOTIFY to notify the application of certain events.
There are four different types of application callbacks.

9.17.1 Token insertion callbacks

An application can use C_OpenSession to set up a token insertion callback function (assuming
insertion callbacks are supported for that slot). When a token is inserted into the specified slot,
the application callback function that was supplied to C_OpenSession is called with the
arguments (0, OCKN_TOKEN | NSERTI O\, pAppl i cati on) , where pApplication was
supplied to C_OpenSession. Token insertion callbacks should return the value CKR_OK.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 156214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

9.17.2 Token removal callbacks

When a token is removed from its slot, each open session which had a callback function specified
when it was opened receives a callback. Each session’s callback is called with the arguments
(hSession, CKN DEVI CE REMOVED, pApplication) , Where hSessi on is the session’s
handle (although when the callback occurs, the session has just been closed because of the token
removal) and pAppl i cati on was supplied to C_OpenSession. It is not necessarily the case that
all slots/tokens will support token removal callbacks. Token removal callbacks should return the
value CKR_OK.

9.17.3 Parallel function completion callbacks

When a function executing in parallel finishes execution, the callback for the session that function
was running in (if there is such a callback) is executed with arguments (hSession,
CKN_COWPLETE, pApplication) , where hSession is the session’s handle and
pAppl i cati on was supplied to C_OpenSession. Parallel function completion callbacks should
return the value CKR_OK.

9.17.4 Serial function surrender callbacks

Functions executing in serial sessions can periodically surrender control to the application who
called them, if the session they are executing in has a callback function. They do this by calling
their session’s callback with arguments (hSession, CKN SURRENDER, pApplication) ,
where hSessi on is the session’s handle and pAppl i cati on was supplied to C_OpenSession.
Serial function surrender callbacks should return either the value CKR_OK (to indicate that
Cryptoki should continue executing the function) or the value CKR_CANCEL (to indicate that
Cryptoki should abort execution of the function). Of course, before returning one of these values,
the callback function can perform some computation.

Note that this type of callback is somewhat different from the other three types of callbacks,
because it doesn’t require a spontaneous generation of a thread or process to execute the callback.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-157213 | Page 15;

10. Mechanisms

A mechanism specifies precisely how a certain cryptographic process is to be performed.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a
subset of the mechanisms listed. There is also no guarantee that a token which supports one
mechanism for some operation supports any other mechanism for any other operation (or even
supports that same mechanism for any other operation). For example, even if a token is able to
create RSA digital signatures with the CKM_RSA_PKCS mechanism, it may or may not be the
case that the same token can also perform RSA encryption.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 158214

Table 1016-11, Mechanisms vs. Functions

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR

Digest

Gen.
Key/
Key
Pair

Wrap
&
Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_PKCS

CKM_RSA_9796

AN

CKM_RSA_X_509

V2

CKM_MD2_RSA_PKCS

CKM_MD5_RSA_PKCS

L

CKM_SHAL_RSA_PKCS

CKM_DSA_KEY_PAIR_GEN

CKM_DSA

CKM_DSA_SHAL

CKM_FORTEZZA_TIMESTAMP

CKM_ECDSA_KEY_PAIR_GEN

CKM_ECDSA

CKM_ECDSA_SHAL

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_DERIVE

CKM_KEA_KEY_PAIR_GEN

CKM_KEA_KEY_DERIVE

CKM_MAYFLY_KEY_PAIR_GEN

CKM_MAYFLY_KEY_DERIVE

CKM_GENERIC_SECRET_KEY_GEN

CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

AN

CKM_RC2_CBC_PAD

CKM_RC2_MAC_GENERAL

CKM_RC2_MAC

CKM_RC4_KEY_GEN

CKM_RC4

CKM_RC5_KEY_GEN

CKM_RC5_ECB

CKM_RC5_CBC

AN

CKM_RC5_CBC_PAD

CKM_RC5_MAC_GENERAL

CKM_RC5_MAC

CKM_DES_KEY_GEN

CKM_DES_ECB

CKM_DES_CBC

AN

CKM_DES_CBC_PAD

CKM_DES_MAC_GENERAL

CKM_DES_MAC

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

Copyright © 1994-7 RSA Laboratories

This is a DRAFT document.

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2 |

MECHANISMS MECHANISMSMECHANISMS

Page 15¢

CKM_DES3_CBC

CKM_DES3_CBC_PAD

CKM_DES3_MAC_GENERAL

CKM_DES3_MAC

CKM_CAST_KEY_GEN

CKM_CAST_ECB

CKM_CAST_CBC

AN

CKM_CAST_CBC_PAD

CKM_CAST_MAC_GENERAL

CKM_CAST_MAC

CKM_CAST3_KEY_GEN

CKM_CAST3_ECB

CKM_CAST3_CBC

AN

CKM_CAST3_CBC_PAD

CKM_CAST3_MAC_GENERAL

CKM_CAST3_MAC

CKM_CAST5_KEY_GEN

CKM_CAST5_ECB

CKM_CAST5_CBC

AN

CKM_CAST5_CBC_PAD

CKM_CAST5_MAC_GENERAL

CKM_CAST5_MAC

CKM_IDEA_KEY_GEN

CKM_IDEA_ECB

CKM_IDEA_CBC

AN

CKM_IDEA_CBC_PAD

CKM_IDEA_MAC_GENERAL

CKM_IDEA_MAC

CKM_CDMF_KEY_GEN

CKM_CDMF_ECB

CKM_CDMF_CBC

AN

CKM_CDMF_CBC_PAD

CKM_CDMF_MAC_GENERAL

CKM_CDMF_MAC

CKM_SKIPJACK_KEY_GEN

CKM_SKIPJACK_ECB64

CKM_SKIPJACK_CBC64

CKM_SKIPJACK_OFB64

CKM_SKIPJACK_CFB64

CKM_SKIPJACK_CFB32

CKM_SKIPJACK_CFB16

CKM_SKIPJACK_CFBS8

NERERRERR

CKM_SKIPJACK_WRAP

CKM_SKIPJACK_PRIVATE_WRAP

CKM_SKIPJACK_RELAYX

CKM_BATON_KEY_GEN

CKM_BATON_ECB128

CKM_BATON_ECB96

CKM_BATON_CBC128

CKM_BATON_COUNTER

NNV AN

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 160214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CKM_BATON_SHUFFLE v
CKM_BATON_WRAP v
CKM_JUNIPER_KEY_GEN v
CKM_JUNIPER_ECB128
CKM_JUNIPER_CBC128
CKM_JUNIPER_COUNTER
CKM_JUNIPER_SHUFFLE
CKM_JUNIPER_WRAP v
CKM_MD2 v
CKM_MD2_HMAC_GENERAL v
CKM_MD2_HMAC v
CKM_MD2_KEY_DERIVATION v
CKM_MD5 v
CKM_MD5_HMAC_GENERAL v
CKM_MD5_HMAC v
CKM_MD5_KEY_DERIVATION v
CKM_SHA _1 v
CKM_SHA_1_HMAC_GENERAL v
CKM_SHA_1_HMAC v
CKM_SHAL_KEY_DERIVATION v
CKM_FASTHASH v
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM PBE SHAL CAST5 CBC
CKM_KEY_WRAP_SET_OAEP v
CKM_KEY_WRAP_LYNKS v
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_SSL3_MASTER_KEY_DERIVE v
CKM_SSL3_KEY_AND_MAC_DERIVE
CKM_SSL3_MD5_MAC v
CKM_SSL3_SHAL_MAC v
CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM_KEY

IRV AN

NERRAER

<

AN

ANERNERNERN RN

1 SR = SignRecover, VR = VerifyRecover.
2 Single-part operations only.
3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of Section 1048 will present in detail the mechanisms supported by Cryptoki v2.0
and the parameters which are supplied to them.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-161213 | Page 16!

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fields of the
CK_MECHANISM_INFO structure, then those fields have no meaning for that particular
mechanism.

10.1 RSA mechanisms

10.1.1 PKCS #1 RSA key pair generation

The PKCS #1 RSA key pair generation mechanism, denoted
CKM_RSA_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on the RSA
public-key cryptosystem, as defined in PKCS #1.

Tihdorsechhisre g@aeeaetdRSA public/private key pairs with a particular modulus length in bits
and public exponent, as specified in the CKA_MODULUS BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, CKA MODULUS, and
CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the CKA_CLASS
and CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the
following attributes to the new private key: CKA_MODULUS, CKA PUBLIC EXPONENT,
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1,
CKA_EXPONENT_2, CKA_COEFFICIENT (see Section 8.6.18.6.1

by the RSA public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned default
initial values.

——). Other attributes supported |

Keys generated with this mechanism can be used with the following mechanisms: PKCS #1 RSA;
ISO/IEC 9796 RSA; X.509 (raw) RSA; PKCS #1 RSA with MD2; PKCS #1 RSA with MD5; PKCS
#1 RSA with SHA-1; and OAEP key wrapping for SET.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

10.1.2 PKCS #1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA PKCS, is a multi-purpose mechanism based
on the RSA public-key cryptosystem and the block formats defined in PKCS #1. It supports
single-part encryption and decryption; single-part signatures and verification with and without
message recovery; key wrapping; and key unwrapping. This mechanism corresponds only to the
part of PKCS #1 that involves RSA,; it does not compute a message digest or a Digestinfo
encoding as specified for the nd2wi t hRSAEncryption and nd5w t hRSAEncrypti on
algorithms in PKCS #1.

This mestteanissmdoas notdpveredparameterany secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 162214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE
attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap
the key type or any other information about the key, except the key length; the application must
convey these separately. In particular, the mechanism contributes only the CKA_CLASS and
CKA_VALUE (and CKA_VALUE_LEN, if the key has it) attributes to the recovered key during
unwrapping; other attributes must be specified in the template.

Constraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and signature verification, the input and output data may
begin at the same location in memory. In the table, k is the length in bytes of the RSA modulus.

Table 10106-22, PKCS #1 RSA: Key And Data Length Constraints

Function Key type Input length | Output length | Comments

C_Encrypt! RSA public key £ k-11 k block type 02
C_Decrypt! RSA private key k £k-11 block type 02
C_Sign! RSA private key £ k-11 k block type 01
C_SignRecover RSA private key £k-11 k block type 01
C_Verify! RSA public key £ k-11, k2 N/A block type 01
C_VerifyRecover RSA public key k £k-11 block type 01
C_WrapKey RSA public key £ k-11 k block type 02
C_UnwrapKey RSA private key k £k-11 block type 02

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

10.1.3 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA 9796, is a mechanism for single-part
signatures and verification with and without message recovery based on the RSA public-key
cryptosystem and the block formats defined in ISO/IEC 9796 and its annex A. This mechanism is
compatible with the draft ANSI X9.31 (assuming the length in bits of the X9.31 hash value is a
multiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings.
Accordingly, the following transformations are performed:

Data is converted between byte and bit string formats by interpreting the most-significant bit
of the leading byte of the byte string as the leftmost bit of the bit string, and the least-
significant bit of the trailing byte of the byte string as the rightmost bit of the bit string (this
assumes the length in bits of the data is a multiple of 8).

A signature is converted from a bit string to a byte string by padding the bit string on the left

with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and converting the
resulting bit string as above; it is converted from a byte string to a bit string by converting the

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-163213 | Page 16:

byte string as above, and removing bits from the left so that the resulting length in bits is the
same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus.

Table 1016-33, ISO/IEC 9796 RSA: Key And Data Length Constraints

Function Key type Input length | Output length
C_Sign!? RSA private key £ &/20 K
C_SignRecover RSA private key £ &/20 k
C_Verify! RSA public key £ &/20 k2 N/A
C_VerifyRecover RSA public key k £ &/20

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

10.1.4 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA X 509, is a multi-purpose mechanism
based on the RSA public-key cryptosystem. It supports single-part encryption and decryption;
single-part signatures and verification with and without message recovery; key wrapping; and
key unwrapping. All these operations are based on so-called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-significant
byte first, applying “raw” RSA exponentiation, and converting the result to a byte string, most-
significant byte first. The input string, considered as an integer, must be less than the modulus;
the output string is also less than the modulus.

This mestizarissmdoan netépveradparantaierany secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the value of the CKA_VALUE
attribute of the key that is wrapped; similarly for unwrapping. The mechanism does not wrap
the key type, key length, or any other information about the key; the application must convey
these separately, and supply them when unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this
mechanism, padding should be performed by prepending plaintext data with 0 bytes. In effect,
to encrypt the sequence of plaintext bytes by b, ... b, (n £ k), Cryptoki forms P=2n1b;+272b,+...+bn.
This number must be less than the RSA modulus. The k-byte ciphertext (k is the length in bytes of
the RSA modulus) is produced by raising P to the RSA public exponent modulo the RSA
modulus. Decryption of a k-byte ciphertext C is accomplished by raising C to the RSA private
exponent modulo the RSA modulus, and returning the resulting value as a sequence of exactly k

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 164214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

bytes. If the resulting plaintext is to be used to produce an unwrapped key, then however many
bytes are specified in the template for the length of the key are taken from the end of this sequence
of bytes.

Technically, the above procedures may differ very slightly from certain details of what is
specified in X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA modulus
and is numerically at least as large as the modulus) and CKR_ENCRYPTED_DATA_INVALID (if
ciphertext is supplied which has the same length as the RSA modulus and is numerically at least
as large as the modulus).

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus.

Table 1010-44, X.509 (Raw) RSA: Key And Data Length Constraints

Function Key type Input length Output length
C_Encrypt? RSA public key £k k
C_Decrypt! RSA private key k k

C_Sign? RSA private key £k k
C_SignRecover RSA private key £k k

C_Verify! RSA public key £k, k2 N/A
C_VerifyRecover RSA public key k k
C_WrapKey RSA public key £k k
C_UnwrapKey RSA private key k £ k (specified in template)

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RSA modulus sizes, in bits.

This mechanism is intended for compatibility with applications that do not follow the PKCS #1 or
ISO/IEC 9796 block formats.

10.1.5 PKCS #1 RSA signature with MD2, MD5, or SHA-1

The PKCS #1 RSA signature with MD2 mechanism, denoted CKM_MD2_RSA_PKCS, performs
single- and multiple-part digital signatures and verification operations without message recovery.
The operations performed are as described in PKCS #1 with the object identifier
md2WithRSAEncryption.

Similarly, the PKCS #1 RSA signature with MD5 mechanism, denoted CKM_MD5 RSA_PKCS,
performs the same operations described in PKCS #1 with the object identifier
md5WithRSAEncryption. The PKCS #1 RSA signature with SHA-1 mechanism, denoted
CKM_SHA1 RSA_PKCS, performs the same operations, except that it uses the hash function
SHA-1, instead of MD2 or MD5.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

©
@

MECHANISMS MECHANISMSMECHANISMS age-165213

Page 16¢

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1 RSA
signature with MD2 and PKCS #1 RSA signature with MD5 mechanisms, k must be at least 27; for
the PKCS #1 RSA signature with SHA-1 mechanism, k must be at least 31.

Table 1016-55, PKCS #1 RSA Signatures with MD2, MD5, or SHA-1: Key And Data Length
Constraints

Function Key type Input length | Output length | Comments
C_Sign RSA private key any k block type 01
C_Verify RSA public key any, k2 N/A block type 01

2 Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes, in bits.

10.2 DSA mechanisms

10.2.1 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key pair
generation mechanism based on the Digital Signature Algorithm defined in FIPS PUB 186.

This mechanism densrateh®&A patdingiarivate key pairs with a particular prime, subprime and
base, as specified in the CKA PRIME, CKA _SUBPRIME, and CKA_BASE attributes of the
template for the public key. Note that this version of Cryptoki does not include a mechanism for
generating these DSA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_ VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA _BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the DSA public and private key types (specifically, the flags indicating which functions the keys
support) may also be specified in the templates for the keys, or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

10.2.2 DSA

The DSA mechanism, denoted CKM_DSA, is a mechanism for single-part signatures and
verification based on the Digital Signature Algorithm defined in FIPS PUB 186. (This mechanism
corresponds only to the part of DSA that processes the 20-byte hash value; it does not compute
the hash value.)

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 166214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

It does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 1016-66, DSA: Key And Data Length Constraints

Function Key type Input Output
length length

C_Sign? DSA private key 20 40

C_Verify! DSA public key 20, 402 N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

10.2.3 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHAZ1, is a mechanism for single- and
multiple-part signatures and verification based on the Digital Signature Algorithm defined in
FIPS PUB 186. This mechanism computes the entire DSA specification, including the hashing
with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 1016-77, DSA with SHA-1: Key And Data Length Constraints

Function Key type Input Output
length length

C_Sign DSA private key any 40

C_Verify DSA public key any, 402 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-167213 | Page 16:

10.2.4 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA TIMESTAMP, is a
mechanism for single-part signatures and verification. The signatures it produces and verifies are
DSA digital signatures over the provided hash value and the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following table. The input
and output data may begin at the same location in memory.

Table 1016-88, FORTEZZA timestamp: Key And Data Length Constraints

Function Key type Input Output
length length

C_Sign? DSA private key 20 40

C_Verify! DSA public key 20, 402 N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of DSA prime sizes, in bits.

10.3 ECDSA mechanisms

10.3.1 ECDSA key pair generation

The ECDSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a key
pair generation mechanism based on the Elliptic Curve Digital Signature Algorithm defined in
IEEE P1363.

This mechanism does not have a parameter.

The mechanism generates ECDSA public/private key pairs with a particular prime, subprime
and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the
template for the public key. Note that this version of Cryptoki does not include a mechanism for
generating these ECDSA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the ECDSA public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of ECDSA prime sizes, in bits.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 168214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

10.3.2 ECDSA

The ECDSA mechanism, denoted CKM_ECDSA, is a mechanism for single-part signatures and
verification based on the Elliptic Curve Digital Signature Algorithm defined in IEEE P1363. (This
mechanism corresponds only to the part of ECDSA that processes the 20-byte hash value; it does
not compute the hash value.)

For the purposes of this mechanism, an ECDSA signature is a 40-byte string, corresponding to the
concatenation of the ECDSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 1016-99, ECDSA: Key And Data Length Constraints

Function Key type Input Output
length length

C_Sign? ECDSA private key 20 40

C_Verify! ECDSA public key 20, 402 N/A

1 Single-part operations only.
2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of ECDSA prime sizes, in bits.

10.3.3 ECDSA with SHA-1

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHAL1, is a mechanism for single-
and multiple-part signatures and verification based on the Elliptic Curve Digital Signature
Algorithm defined in IEEE P1363. This mechanism computes the entire ECDSA specification,
including the hashing with SHA-1.

For the purposes of this mechanism, a ECDSA signature is a 40-byte string, corresponding to the
concatenation of the ECDSA values r and s, each represented most-significant byte first.

This mechanism does not have a parameter.
Constraints on key types and the length of data are summarized in the following table:

Table 1016-1018, ECDSA with SHA-1: Key And Data Length Constraints

Function Key type Input length | Output length
C_Sign ECDSA private key any 40
C_Verify ECDSA public key any, 402 N/A

2 Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of ECDSA prime sizes, in bits.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-169213

Page 16¢

10.4 Diffie-Hellman mechanisms

10.4.1 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH_PKCS_KEY_PAIR_GEN, is a key pair generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS #3. (This is analogous to what PKCS #3 calls “phase

)

Tihdoesatbibhisre aypaexateteDiffie-Hellman public/private key pairs with a particular prime and
base, as specified in the CKA_PRIME and CKA_BASE attributes of the template for the public
key. If the CKA_VALUE_BITS attribute of the private key is specified, the mechanism limits the
length in bits of the private value, as described in PKCS #3. Note that this version of Cryptoki
does not include a mechanism for generating a prime and base.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_BASE, and
CKA_VALUE (and the CKA_VALUE BITS attribute, if it is not already provided in the
template) attributes to the new private key; other attributes required by the Diffie-Hellman public
and private key types must be specified in the templates.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of Diffie-Hellman prime sizes, in bits.

10.4.2 PKCS #3 Diffie-Hellman key derivation

The PKCS #3 Diffie-Hellman key derivation mechanism, denoted CKM_DH_PKCS_DERIVE, is
a mechanism for key derivation based on Diffie-Hellman key agreement, as defined in PKCS #3.
(This is analogous to what PKCS #3 calls “phase 11”.)

It has a parameter, which is the public value of the other party in the key agreement protocol,
represented as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public value of
the other party. It computes a Diffie-Hellman secret value from the public value and private key
according to PKCS #3, and truncates the result according to the CKA_KEY_TYPE attribute of the
template and, if it has one and the key type supports it, the CKA VALUE_LEN attribute of the
template. (The truncation removes bytes from the leading end of the secret value.) The
mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
values of the CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify that the
derived key should have the CKA_SENSITIVE attribute set to FALSE; similarly, if the base key

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 170214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

has the CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of Diffie-Hellman prime sizes, in bits.

10.5 KEA mechanism parameters

CK_KEA DERIVE_PARAMS

CK_KEA DERIVE_PARAMS is a structure that provides the parameters to the
CKM_KEA _DERIVE mechanism. It is defined as follows:

typedef struct CK KEA DER VE PARANS {
CK BBOCOL i sSender;
CK_ULONG ul Randorien;
CK _BYTE_PTR pRandon®;
CK _BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK _BYTE_PTR pPubl i cDat a;
} OK KEA DER VE;

The fields of the structure have the following meanings:
isSender Option for generating the key (called a TEK). The value is
TRUE if the sender (originator) generates the TEK, FALSE if
the recipient is regenerating the TEK.
ulRandomLen size of random Ra and Rb, in bytes
pRandomA pointer to Ra data
pRandomB pointer to Rb data

ulPublicDatalen other party’s KEA public key size

pPublicData pointer to other party’s KEA public key value

CK_KEA DERIVE_PARAMS PTR

CK_KEA_DERIVE_PARAMS PTR points to a CK_KEA_DERIVE_PARAMS structure. It is
implementation-dependent.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-171213

Page 17

10.6 KEA mechanisms

10.6.1 KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA_KEY_PAIR_GEN, is a key pair
generation mechanism

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime, subprime and
base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE attributes of the
template for the public key. Note that this version of Cryptoki does not include a mechanism for
generating these KEA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the KEA public and private key types (specifically, the flags indicating which functions the keys
support) may also be specified in the templates for the keys, or else are assigned default initial
values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of KEA prime sizes, in bits.

10.6.2 KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA DERIVE, is a mechanism for key
derivation based on KEA, the Key Exchange Algorithm.

It has a parameter, a CK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of
the new key; other attributes required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
values of the CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify that the
derived key should have the CKA_SENSITIVE attribute set to FALSE; similarly, if the base key
has the CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of KEA prime sizes, in bits.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 172214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

10.7 MAYFLY mechanism parameters

CK_MAYFLY_DERIVE_PARAMS

CK_MAYFLY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_MAYFLY_DERIVE mechanism. It is defined as follows:

typedef struct CK MAYFLY DER VE PARAMNS {
CK BBOCOL i sSender;
CK_ULONG ul Randorien;
CK _BYTE_PTR pRandon®;
CK _BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK _BYTE_PTR pPubl i cDat a;
} CK_MAYFLY_DER VE;

The fields of the structure have the following meanings:
isSender Option for generating the key (called a TEK). The value is
TRUE if the sender (originator) generates the TEK, FALSE if
the recipient is regenerating the TEK.
ulRandomLen size of random Ra and Rb, in bytes
pRandomA pointer to Ra data
pRandomB pointer to Rb data

ulPublicDatalen other party’s MAYFLY public key size

pPublicData pointer to other party’s MAYFLY public key value

CK_MAYFLY_DERIVE_PARAMS PTR
CK_MAYFLY_DERIVE_PARAMS PTR points to a CK_MAYFLY_DERIVE_PARAMS
structure. It is implementation-dependent.

10.8 MAYFLY mechanisms

10.8.1 MAYFLY key pair generation

The MAYFLY key pair generation mechanism, called CKM_KEA_KEY_PAIR_GEN, is a key pair
generation mechanism for the MAYFLY key exchange key pair.

It does not have a parameter.

The mechanism generates MAYFLY public/private key pairs with a particular prime, subprime
and base, as specified in the CKA PRIME, CKA _SUBPRIME, and CKA_BASE attributes of the

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-173213

Page 17:

template for the public key. Note that this version of Cryptoki does not include a mechanism for
generating these MAYFLY parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME, CKA_SUBPRIME,
CKA_BASE, and CKA_VALUE attributes to the new private key. Other attributes supported by
the MAYFLY public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys or else are assigned default
initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of MAYFLY prime sizes, in bits.

10.8.2 MAYFLY key derivation

The MAYFLY key derivation mechanism, denoted CKM_MAYFLY_DERIVE, is a mechanism for
key derivation based on MAYFLY.

It has a parameter,a CK_MAYFLY_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports it, the
CKA _VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value.) The mechanism contributes the result as the CKA_VALUE attribute of
the new key; other attributes required by the key type must be specified in the template.

The derived key inherits the values of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
values of the CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overridden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS_SENSITIVE attribute set to TRUE, then the template may not specify that the
derived key should have the CKA_SENSITIVE attribute set to FALSE; similarly, if the base key
has the CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template may not specify
that the derived key should have the CKA_EXTRACTABLE attribute set to TRUE.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of MAYFLY prime sizes, in bits.

10.9 Generic secret key mechanisms

10.9.1 Generic secret key generation

The generic secret key generation mechanism, denoted CKM_GENERIC_SECRET_KEY_GEN, is
used to generate generic secret keys. The generated keys take on any attributes provided in the
template passed to the C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the
length of the key to be generated.

It does not have a parameter.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 174214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the template
specifies an object type and a class, they must have the following values:

CK_OBJECT_CLASS = CKO_SECRET_KEY;
CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of key sizes, in bits.

10.10 Wrapping/unwrapping private keys (RSA, Diffie-Hellman, and DSA)

Cryptoki v2.0 allows the use of secret keys for wrapping and unwrapping RSA private keys,
Diffie-Hellman private keys, and DSA private keys. For wrapping, a private key is BER-encoded
according to PKCS #8’s PrivateKeylnfo ASN.1 type. PKCS #8 requires an algorithm identifier for
the type of the secret key. The object identifiers for the needed algorithm identifiers are as
follows:

rsaeEncryption CBJECT IDENTIFIER ::={ pkcs-1 1}
dhKeyAgreenent OBJECT | DENTIFIER ::= { pkcs-3 1}

DSA OBJECT IDENTIFIER ::={ iso(1) identifier-organi zation(3)
oiw(14) secsig(3) algorithm(2) 12 }
where

pkcs-1 CBJECT IDENTIFIER ::= { iso(1) menber-body(2) US(840)
rsadsi (113549) pkecs(1l) 1}

pkcs-3 CBJECT IDENTIFIER ::= { iso(1) menber-body(2) US(840)
rsadsi (113549) pkecs(1l) 3}

These object identifiers have the following parameters, respectively:

NULL

DHPar anet er :: = SEQUENCE {
prinme INTECER, -- p
base INTECER, -- ¢

pri vat eVal ueLengt h | NTEGER CPTI ONAL

DSAPar anet ers :: = SEQUENCE {

nodul usLength INTEGER, -- length of pin bits
prinel INTEGER, -- nodulus p
prine2 INTEGER, -- nodulus q

base INTEGER -- base g

Within the PrivateKeyInfo type:

RSA private keys are BER-encoded according to PKCS #1’s RSAPrivateKey ASN.1 type. This
type requires particular values for all the attributes specific to Cryptoki’s RSA private key
objects. In other words, if a Cryptoki library does not have values for an RSA private key’s
CKA_MODULUS, CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT,

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-175213

Page 17¢

CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1, CKA_EXPONENT2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-encoding of the key,
and so it cannot prepare it for wrapping.

Diffie- Hellman prlvate keys are eneeded—by—e*p%ssmg—the—pr%mlue—as—a—seqﬁenee—ef

SIR—I—NGrepresented as BER encoded ASN 1 type INTEGER

Once a private key has been BER-encoded as a PrivateKeylInfo type, the resulting string of bytes
can be encrypted with the secret key. This encryption must be done in CBC mode with PKCS
padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted ciphertext
is decrypted, and the PKCS padding is removed. The data thereby obtained are parsed as a
PrivateKeylnfo type, and the wrapped key is produced. An error will result if the original
wrapped key does not decrypt properly, or if the decrypted unpadded data does not parse
properly, or its type does not match the key type specified in the template for the new key. The
unwrapping mechanism contributes only those attributes specified in the PrivateKeylnfo type to
the newly-unwrapped key; other attributes must be specified in the template, or will take their
default values.

10.11 The RC2 cipher
RC2 is a proprietary block cipher which is trademarked by RSA Data Security. It has a variable

keysize and an additional parameter, the “effective number of bits in the RC2 search space”,
which can take on values in the range 1-1024, inclusive.

10.12 RC2 mechanism parameters

CK_RC2_PARAMS
CK_RC2_PARAMS provides the parameters to the CKM_RC2 ECB and CKM_RC2 _MAC

mechanisms. It holds the effective number of bits in the RC2 search space. It is defined as
follows:

typdef OK ULONG CK_RC2_PARAMS;

CK_RC2_PARAMS_PTR

CK_RC2_PARAMS PTR points to a CK_RC2 PARAMS structure. It is implementation-
dependent.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 176214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_RC2_CBC_PARAMS

CK_RC2_CBC_PARAMS is a structure that provides the parameters to the CKM_RC2_CBC and
CKM_RC2 _CBC_PAD mechanisms. It is defined as follows:

typedef struct CK RC2_CBC PARANS {
CK_ ULONG ul EffectiveBits;
CK BYTE iv[8];

} K RC2_CBC _PARAMS;

The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bits in the RC2 search space

iv the initialization vector (V) for cipher block chaining mode

CK_RC2_CBC_PARAMS_PTR

CK_RC2_CBC_PARAMS PTR points to a CK_RC2 CBC PARAMS structure. It is
implementation-dependent.

CK_RC2_MAC_GENERAL_PARAMS

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to the
CKM_RC2 _MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK RC2_NAC GENERAL_PARAMNS {
CK_ ULONG ul EffectiveBits;
CK_ULONG ul MacLengt h;

} CK_RC2_NMAC GENERAL_PARANVS;

The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bits in the RC2 search space

ulMacLength length of the MAC produced, in bytes

CK_RC2_MAC_GENERAL_PARAMS_PTR

CK_RC2_MAC_GENERAL_PARAMS_PTR points to a CK_RC2_MAC_GENERAL_PARAMS
structure. It is implementation-dependent.

10.13 RC2 mechanisms

10.13.1 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2_KEY_GEN, is a key generation
mechanism for RSA Data Security’s proprietary block cipher RC2.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-177213

Page 17i

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the RC2 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 key sizes, in bits.

10.13.2 RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on RSA Data Security’s proprietary block
cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits in the RC2
search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with up to seven null bytes so that the resulting length is a multiple of eight. The output data is
the same length as the padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA _VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA _VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-1111, RC2-ECB: Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey RC2 multiple of 8 determined by type of key

being unwrapped or

CKA_VALUE_LEN

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 178214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

10.13.3 RC2-CBC

RC2-CBC, denoted CKM_RC2_CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s proprietary
block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2 _CBC_PARAMS structure, where the first field indicates the
effective number of bits in the RC2 search space, and the next field is the initialization vector for
cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with up to seven null bytes so that the resulting length is a multiple of eight. The output data is
the same length as the padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA _VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA _VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-1212, RC2-CBC: Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt RC2 multiple of 8 same as input length no final part
C_Decrypt RC2 multiple of 8 same as input length no final part
C_WrapKey RC2 any input length rounded up to
multiple of 8

C_UnwrapKey RC2 multiple of 8 determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

10.13.4 RC2-CBC with PKCS padding
RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA

Data Security’s proprietary block cipher RC2; cipher-block chaining mode as defined in FIPS PUB
81; and the block cipher padding method detailed in PKCS #7.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-179213

Page 17¢

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates the
effective number of bits in the RC2 search space, and the next field is the initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section 10.100 for details). The entries in table
Table 1010-1313Fable-16-13 for data length constraints when wrapping and unwrapping keys do
not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-1313, RC2-CBC with PKCS padding: Key And Data Length Constraints

Function Key type Input length Output length
C_Encrypt RC2 any input length rounded up to
multiple of 8
C_Decrypt RC2 multiple of 8 between 1 and 8 bytes shorter
than input length
C_WrapKey RC2 any input length rounded up to
multiple of 8
C_UnwrapKey RC2 multiple of 8 between 1 and 8 bytes shorter
than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC2 effective number of bits.

10.13.5 General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on RSA Data Security’s proprietary block
cipher RC2 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC2_MAC_GENERAL_PARAMS structure, which specifies the
effective number of bits in the RC2 search space and the output length desired from the

mechanism.

The output bytes from this mechanism are taken from the start of the final RC2 cipher block
produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 180214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2 |

Table 1016-1414, General-length RC2-MAC: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign RC2 any 0-8, as specified in parameters
C_Verify RC2 any 0-8, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of RC2 effective number of bits.

10.13.6 RC2-MAC

RC2-MAC, denoted by CKM_RC2_MAC, is a special case of the general-length RC2-MAC
Section
CK_RC2_MAC_GENERAL_PARAMS parameter, it takes a CK_RC2_PARAMS parameter,
which only contains the effective number of bits in the RC2 search space.

mechanism

(see

10.13.516-13:5). Instead of

produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-1515, RC2-MAC: Key And Data Length Constraints

RC2-MAC always

Function Key type Data length Signature length
C_Sign RC2 any 4
C_Verify RC2 any 4

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO

structure specify the supported range of RC2 effective number of bits.

10.14 RC4 mechanisms

10.14.1 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4 KEY_GEN, is a key generation

mechanism for RSA Data Security’s proprietary stream cipher RC4.

Trdoevedidravma pananattsr. RC4 keys with a particular length in bytes, as specified in the

CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_ VALUE attributes to
the new key. Other attributes supported by the RC4 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

Copyright © 1994-7 RSA Laboratories

This is a DRAFT document.

a |

MECHANISMS MECHANISMSMEGHANISMS Page-181213 | Page 18!

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC4 key sizes, in bits.

10.14.2 RC4

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Data Security’s proprietary stream cipher RC4.

Cawdsaiothare &partypeterand the length of input and output data are summarized in the
following table:

Table 1016-1616, RC4 Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt RC4 any same as input length | no final part
C_Decrypt RC4 any same as input length | no final part

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC4 key sizes, in bits.

10.15 The RCS5 cipher
RC5 is a parametrizable block cipher for which RSA Data Security has applied for a patent. It has

a variable wordsize, a variable keysize, and a variable number of rounds. The blocksize of RC5 is
always equal to twice its wordsize.

10.16 RC5 mechanism parameters

CK_RC5_PARAMS

CK_RC5_PARAMS provides the parameters to the CKM_RC5 ECB and CKM_RC5 MAC
mechanisms. It is defined as follows:

typdef struct CK RC5_PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;

} CK _RC5_PARAVS,

The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 182214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_RC5_PARAMS_PTR

CK_RC5_PARAMS PTR points to a CK_RC5 PARAMS structure. It is implementation-
dependent.

CK_RC5_CBC_PARAMS

CK_RC5_CBC_PARAMS is a structure that provides the parameters to the CKM_RC5_CBC and
CKM_RC5 _CBC_PAD mechanisms. It is defined as follows:

typedef struct CK RC5_CBC PARANS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul I vLen;
} OK_RC5_CBC _PARAMNS;

The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment
plv pointer to initialization vector (1V) for CBC encryption
ullvLen length of initialization vector (must be same as blocksize)

CK_RC5_CBC_PARAMS_PTR

CK_RC5 _CBC_PARAMS PTR points to a CK_RC5 CBC PARAMS structure. It is
implementation-dependent.

CK_RC5_MAC_GENERAL_PARAMS

CK_RC5_MAC_GENERAL_PARAMS is a structure that provides the parameters to the
CKM_RC5 MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK RC5_NAC GENERAL_ PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;

} CK_RC5_NMAC GENERAL_PARANVS;

The fields of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment

ulMacLength length of the MAC produced, in bytes

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-183213 | Page 18t

CK_RC5_MAC_GENERAL_PARAMS_PTR

CK_RC5_MAC_GENERAL_PARAMS_PTR points to a CK_RC5_MAC_GENERAL_PARAMS
structure. It is implementation-dependent.

10.17 RC5 mechanisms

10.17.1 RCS5 key generation

The RC5 key generation mechanism, denoted CKM_RC5_KEY_GEN, is a key generation
mechanism for RSA Data Security’s block cipher RC5.

Tihdoenedidraema gamanagesr RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the RC5 key type (specifically, the flags indicating
which functions the key supports) may be specified in the template for the key, or else are
assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of RC5 key sizes, in bytes.

10.17.2 RC5-ECB

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping, based on RSA Data Security’s block cipher RC5
and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 PARAMS, which indicates the wordsize and number of rounds of
encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with null bytes so that the resulting length is a multiple of the cipher blocksize (twice the
wordsize). The output data is the same length as the padded input data. It does not wrap the key
type, key length, or any other information about the key; the application must convey these
separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attributes of the template and, if it has one, and the key type supports it, the
CKA _VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA _VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 184214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 1016-1747, RC5-ECB: Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey RC5 multiple of determined by type of key
blocksize being unwrapped or
CKA_VALUE_LEN

10.17.3 RC5-CBC

RC5-CBC, denoted CKM_RC5 _CBC, is a mechanism for single- and multiple-part encryption
and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s block cipher
RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initialization vector for cipher block
chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with up to seven null bytes so that the resulting length is a multiple of eight. The output data is
the same length as the padded input data. It does not wrap the key type, key length, or any other
information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-185213

Page 18¢

Table 1016-1818, RC5-CBC: Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey RC5 multiple of determined by type of key
blocksize being unwrapped or
CKA_VALUE_LEN

10.17.4 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5 _CBC_PAD, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping, based on RSA
Data Security’s block cipher RC5; cipher-block chaining mode as defined in FIPS PUB 81; and the
block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC5_CBC_PARAMS structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initialization vector for cipher block
chaining mode.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section10.10-6-for details). The entries in table
Table 1010-1919Fable-16-19 for data length constraints when wrapping and unwrapping keys do
not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 186214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 1016-1919, RC5-CBC with PKCS padding: Key And Data Length Constraints

Function Key type Input length Output length
C_Encrypt RC5 any input length rounded up to
multiple of blocksize
C_Decrypt RC5 multiple of between 1 and blocksize bytes
blocksize shorter than input length
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey RC5 multiple of between 1 and blocksize bytes
blocksize shorter than input length

10.17.5 General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RC5_MAC_GENERAL, is a mechanism for single-
and multiple-part signatures and verification, based on RSA Data Security’s block cipher RC5 and
data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC5 MAC_GENERAL_PARAMS structure, which specifies the
wordsize and number of rounds of encryption to use and the output length desired from the

mechanism.

The output bytes from this mechanism are taken from the start of the final RC5 cipher block
produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-2020, General-length RC2-MAC: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign RC2 any 0-blocksize, as specified in parameters
C_Verify RC2 any 0-blocksize, as specified in parameters

10.17.6 RC5-MAC

RC5-MAC, denoted by CKM_RC5 MAC, is a special case of the general-length RC5-MAC

mechanism (see Section 10.17.516-1%5). Instead of taking a |

CK_RC5_MAC_GENERAL_PARAMS parameter, it takes a CK_RC5 PARAMS parameter.
RC5-MAC always produces and verifies MACs half as large as the RC5 blocksize.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-187213 | Page 18;

Table 10106-212%, RC5-MAC: Key And Data Length Constraints ‘

Function Key type Data length Signature length
C_Sign RC5 any RC5 wordsize = élocksize/20
C_Verify RC5 any RC5 wordsize = éblocksize/20

10.18 General block cipher mechanism parameters

CK_MAC_GENERAL_PARAMS

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length MACing
mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST5, IDEA, and CDMF ciphers. It
holds the length of the MAC that these mechanisms will produce. It is defined as follows:

typedef CK_ULONG OK_MAC GENERAL_PARAVNE;

CK_MAC_GENERAL_PARAMS PTR

CK_MAC_GENERAL_PARAMS _PTR points to a CK_MAC_GENERAL_PARAMS. It is
implementation-dependent.

10.19 General block cipher mechanisms

For brevity’s sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CAST3, CAST5, IDEA,
and CDMF block ciphers will be described together here. Each of these ciphers has the following
mechanisms, which will be described in a templatized form:

10.19.1 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME>_KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the key type (specifically, the flags indicating which
functions the key supports) may be specified in the template for the key, or else are assigned
default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as specified in
FIPS PUB 46-2. Similarly, when a triple-DES key is generated, each of the DES keys comprising it
has its parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is possible for
“weak” or “semi-weak” keys to be generated. Similarly, when triple-DES keys are generated, it is
token dependent whether or not it is possible for any of the component DES keys to be “weak” or
“semi-weak” keys.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 188214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

When CAST, CAST3, or CASTS5 keys are generated, the template for the secret key must specify a
CKA_VALUE_LEN attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure may or may not be used. The CAST, CAST3, and CAST5 ciphers have variable key
sizes, and so for the the key generation mechanisms for these ciphers, the ulMinKeySize and
ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of
key sizes, in bytes. For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not
used.

10.19.2 General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME> ECB. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

Thdsenedtamdsmacparamebeand unwrap any secret key. Of course, a particular token may not be
able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts
the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end
with null bytes so that the resulting length is a multiple of <NAME>’s blocksize. The output data
is the same length as the padded input data. It does not wrap the key type, key length or any
other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to
the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the
CKA _VALUE_LEN attribute of the template. The mechanism contributes the result as the
CKA _VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-189213 |

Table 1016-2222, General block cipher ECB: Key And Data Length Constraints ‘

Function Key type Input length Output length Comments
C_Encrypt <NAME> multiple of same as input length no final part
blocksize
C_Decrypt <NAME> multiple of same as input length no final part
blocksize
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C_UnwrapKey <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

10.19.3 General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted
CKM_<NAME> CBC. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initialization vector for cipher block chaining mode. The initialization
vector has the same length as <NAME>’s blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-2323, General block cipher CBC: Key And Data Length Constraints

Function Key type Input length Output length Comments
C_Encrypt <NAME> multiple of same as input length no final part
blocksize
C_Decrypt <NAME> multiple of same as input length no final part
blocksize
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C_UnwrapKey <NAME> any determined by type of key
being unwrapped or
CKA_VALUE_LEN

10.19.4 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-CBC with
PKCS padding”, denoted CKM_<NAME>_CBC PAD. It is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping with <NAME>.
All ciphertext is padded with PKCS padding.

It has a parameter, an initialization vector for cipher block chaining mode. The initialization
vector has the same length as <NAME>’s blocksize.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered

from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value
should be specified for the CKA_VALUE_LEN attribute.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 190214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section 10.100 for details). The entries in table
Table 1010-2424Fable-10-24 for data length constraints when wrapping and unwrapping keys do
not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-2424, General block cipher CBC with PKCS padding: Key And Data Length
Constraints

Function Key type Input length Output length
C_Encrypt <NAME> any input length rounded up to
multiple of blocksize
C_Decrypt <NAME> multiple of between 1 and blocksize bytes
blocksize shorter than input length
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C_UnwrapKey <NAME> multiple of between 1 and blocksize bytes
blocksize shorter than input length

10.19.5 General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-MAC”,
denoted CKM_<NAME>_MAC_GENERAL. It is a mechanism for single- and multiple-part
signatures and verification.

It has a parameter,a CK_MAC_GENERAL_PARAMS, which specifies the size of the output.

The output bytes from this mechanism are taken from the start of the final cipher block produced
in the MACing process.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 1016-2525, General-length general block cipher MAC: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign <NAME> any 0-blocksize, depending on parameters
C_Verify <NAME> any 0-blocksize, depending on parameters

10.19.6 General block cipher MAC

Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted
CKM_<NAME> MAC. This mechanism is a special case of the
CKM_<NAME> MAC_GENERAL mechanism described in Section 10.19.518-19:5. It always |
produces an output of size half as large as <NAME>’s blocksize.

This mechanism has no parameters.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-191213 | Page 19!

Table 1016-2626, General block cipher MAC: Key And Data Length Constraints ‘

Function Key type Data length Signature length
C_Sign <NAME> any éblocksize/20
C_Verify <NAME> any éblocksize/20

10.20 Double-length DES mechanisms

10.20.1 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2 KEY_GEN, is a key
generation mechanism for double-length DES keys. The DES keys making up a double-length
DES key both have their parity bits set properly, as specified in FIPS PUB 46-2.

Traborsenbtihiva aqerdoegtesrthe CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key. Other attributes supported by the double-length DES key type (specifically, the flags
indicating which functions the key supports) may be specified in the template for the key, or else
are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES_ECB, CKM_DES_CBC, CKM_DES_CBC_PAD, CKM_DES_MAC_GENERAL, and
CKM_DES MAC (these mechanisms are described in templatized form in Section 10.1910.19

_—)
Triple-DES encryption with a double-length DES key consists of three steps: encryption with the
first DES key; decryption with the second DES key; and encryption with the first DES key.

When double-length DES keys are generated, it is token-dependent whether or not it is possible
for either of the component DES keys to be “weak™ or “semi-weak” keys.

10.21 SKIPJACK mechanism parameters

CK_SKIPJACK_PRIVATE_WRAP_PARAMS

CK_SKIPJACK_PRIVATE_WRAP_PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_PRIVATE_WRAP mechanism. It is defined as follows:

typedef struct CK SKI PJACK PR VATE WRAP_PARAMS {
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDhat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandQ_.en;
CK_ULONG ul QLen;
CK_ULONG ul Randontien;
CK_BYTE_PTR pRandon#;

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 192214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_BYTE_PTR pPri meP;
CK_BYTE_PTR pBaseG
CK_BYTE_PTR pSubpri meQ

} CK_SKI PJACK PRI VATE WRAP_PARANS;

The fields of the structure have the following meanings:

ulPasswordLen length of the password
pPassword pointer to the buffer which contains the user-supplied
password

ulPublicDatalen other party’s key exchange public key size

pPublicData pointer to other party’s key exchange public key value

ulPandGLen length of prime and base values
ulQLen length of subprime value
ulRandomLen size of random Ra, in bytes

pRandomA pointer to Ra data

pPrimeP pointer to Prime, p, value
pBaseG pointer to Base, g, value
pSubprimeQ pointer to Subprime, g, value

CK_SKIPJACK_PRIVATE_WRAP_PARAMS PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMS PTR points to a
CK_PRIVATE_WRAP_PARAMS structure. It is implementation-dependent.

CK_SKIPJACK_RELAYX_PARAMS

CK_SKIPJACK_RELAYX PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_RELAYX mechanism. It is defined as follows:

typedef struct CK SKI PJACK RELAYX PARAMNS {
CK_ULONG ul A dw appedXLen;
CK _BYTE_PTR pQa dW appedX;
CK_ULONG ul d dPasswor dLen;
CK_BYTE_PTR pQd dPasswor d;
CK_ULONG ul d dPubl i cDat aLen;
CK_BYTE_PTR pd dPubl i cDat a;
CK_ULONG ul d drRandontien;
CK_BYTE_PTR pd dRandonA;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEcH

CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandonien;
CK_BYTE_PTR pNewRandon?;

} CK_SKI PJACK _RELAYX PARANVS;

The fields of the structure have the following meanings:

ulOldWrappedXLen
pOIldWrappedX
ulOldPasswordLen

pOldPassword

ulOldPublicDatalen
pOldPublicData
ulOldRandomLen
pOldRandomA
ulNewPasswordLen

pNewPassword

ulNewPublicDatalen
pNewPublicData
ulNewRandomLen

pNewRandomA

length of old wrapped key in bytes
pointer to old wrapper key
length of the old password

pointer to the buffer which contains the old user-supplied
password

old key exchange public key size

pointer to old key exchange public key value
size of old random Ra in bytes

pointer to old Ra data

length of the new password

pointer to the buffer which contains the new user-supplied
password

new key exchange public key size
pointer to new key exchange public key value
size of new random Ra in bytes

pointer to new Ra data

CK_SKIPJACK_RELAYX PARAMS PTR

CK_SKIPJACK_RELAYX_PARAMS_PTR points to a CK_SKIPJACK_RELAYX_PARAMS
structure. It is implementation-dependent.

10.22 SKIPJACK mechanisms

10.22.1 SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is a key
generation mechanism for SKIPJACK. The output of this mechanism is called a Message

Encryption Key (MEK).

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 19:

Page 194214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key.

10.22.2 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit electronic codebook mode as defined in
FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-2727, SKIPJACK-ECB64: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part

10.22.3 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK_CBC64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit cipher-block chaining mode as defined
in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-2828, SKIPJACK-CBC64: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part

10.22.4 SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK_OFB64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit output feedback mode as defined in
FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to

some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular 1V when decrypting.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMECSHA

Page-195213 |

Constraints on key types and the length of data are summarized in the following table:

Table 1016-2929, SKIPJACK-OFB64:; Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part

10.22.5 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK_CFB64, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode as defined in FIPS
PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3036, SKIPJACK-CFB64: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 8 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 8 | same as input length | no final part

10.22.6 SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode as defined in FIPS
PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-313%, SKIPJACK-CFB32: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 4 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 4 | same as input length | no final part

10.22.7 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechanism for single- and multiple-
part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode as defined in FIPS
PUB 185.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 196214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3232, SKIPJACK-CFB16: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 4 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 4 | same as input length | no final part

10.22.8 SKIPJACK-CFB8

SKIPJACK-CFB8, denoted CKM_SKIPJACK_CFB8, is a mechanism for single- and multiple-part
encryption and decryption with SKIPJACK in 8-bit cipher feedback mode as defined in FIPS PUB
185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3333, SKIPJACK-CFBS8: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt SKIPJACK multiple of 4 | same as input length | no final part
C_Decrypt SKIPJACK multiple of 4 | same as input length | no final part

10.22.9 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to wrap and
unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and JUNIPER keys.

It does not have a parameter.

10.22.10 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted CKM_SKIPJACK_PRIVATE_WRAP, is
used to wrap and unwrap a private key. It can wrap KEA and DSA private keys.

It has a parameter, a CK_SKIPJACK_PRIVATE_WRAP_PARAMS structure

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-197213

Page 197

10.22.11 SKIPJACK-RELAYX

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used with the
C_WrapKey function to “change the wrapping” on a private key which was wrapped with the
SKIPJACK-PRIVATE-WRAP mechanism (see Section 10.22.1016:22.109).

It has a parameter, a CK_SKIPJACK_RELAYX PARAMS structure.

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs from other
key-wrapping mechanisms. Other key-wrapping mechanisms take a key handle as one of the
arguments to C_WrapKey; however, for the SKIPJACK RELAYX mechanism, the [always

invalid] value 0 should be passed as the key handle for C WrapKey, and the already-wrapped
key isshould be passed in as part of the CK_SKIPJACK_RELAYX PARAMS structure.

10.23 BATON mechanisms

10.23.1 BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key generation
mechanism for BATON. The output of this mechanism is called a Message Encryption Key
(MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key.

10.23.2 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and multiple-part
encryption and decryption with BATON in 128-bit electronic codebook mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3434, BATON-ECB128: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt BATON multiple of 16 | same as input length no final part
C_Decrypt BATON multiple of 16 | same as input length no final part

10.23.3 BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for single- and multiple-part
encryption and decryption with BATON in 96-bit electronic codebook mode.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 198214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3535, BATON-ECB96: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt BATON multiple of 12 | same as input length no final part
C_Decrypt BATON multiple of 12 | same as input length no final part

10.23.4 BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for single- and multiple-part
encryption and decryption with BATON in 128-bit cipher-block chaining mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3636, BATON-CBC128: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt BATON multiple of 16 | same as input length no final part
C_Decrypt BATON multiple of 16 | same as input length no final part

10.23.5 BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single- and
multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3737, BATON-COUNTER: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt BATON multiple of 16 | same as input length no final part
C_Decrypt BATON multiple of 16 | same as input length no final part

10.23.6 BATON-SHUFFLE
BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single- and multiple-
part encryption and decryption with BATON in shuffle mode.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-199213 | Page 19¢

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 1016-3838, BATON-SHUFFLE: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt BATON multiple of 16 | same as input length no final part
C_Decrypt BATON multiple of 16 | same as input length no final part

10.23.7 BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a function used
to wrap and unwrap a secret key (MEK). It can wrap and unwrap SKIPJACK, BATON, and
JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
and CKA_VALUE attributes to it.

10.24 JUNIPER mechanisms

10.24.1 JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a key
generation mechanism for JUNIPER. The output of this mechanism is called a Message
Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to
the new key.

10.24.2 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for single- and multiple-
part encryption and decryption with JUNIPER in 128-bit electronic codebook mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular IV
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table. For

encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 200214

PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2 |

Table 1016-3939, JUNIPER-ECB128: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt JUNIPER multiple of 16 | same as input length no final part
C_Decrypt JUNIPER multiple of 16 | same as input length no final part

10.24.3 JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechanism for single- and multiple-
part encryption and decryption with JUNIPER in 128-bit cipher-block chaining mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

Table 1016-4040, JUNIPER-CBC128; Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt JUNIPER multiple of 16 | same as input length no final part
C_Decrypt JUNIPER multiple of 16 | same as input length no final part

10.24.4 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

Table 1016-414%, JUNIPER-COUNTER: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt JUNIPER multiple of 16 | same as input length no final part
C_Decrypt JUNIPER multiple of 16 | same as input length no final part

10.24.5 JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is

multiple-part encryption and decryption with JUNIPER in shuffle mode.

Copyright © 1994-7 RSA Laboratories

a mechanism for single- and

This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-201213

Page 201

It has a parameter, a 24-byte initialization vector. During an encryption operation, this IV is set to
some value generated by the token—in other words, the application cannot specify a particular 1V
when encrypting. It can, of course, specify a particular 1V when decrypting.

Constraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin at the same location in
memory.

Table 1016-4242, JUNIPER-SHUFFLE: Data and Length Constraints

Function Key type Input length | Output length Comments
C_Encrypt JUNIPER multiple of 16 | same as input length no final part
C_Decrypt JUNIPER multiple of 16 | same as input length no final part

10.24.6 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a function
used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON, and JUNIPER
keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
and CKA_VALUE attributes to it.

10.25 MD2 mechanisms

10.25.1 MD2

The MD2 mechanism, denoted CKM_MD?2, is a mechanism for message digesting, following the
MD2 message-digest algorithm defined in RFC 1319.

Cawstsainthandtedargtietdrdata are summarized in the following table:

Table 1016-4343, MD2: Data Length Constraints

Function Data length Digest length
C_Digest any 16

10.25.2 General-length MD2-HMAC
The general-length MD2-HMAC mechanism, denoted CKM_MD2 HMAC _GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the MD2

hash function. The keys it uses are generic secret keys.

It has a parameter, a CKA_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-16 (the output size of MD2 is 16 bytes).

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 202214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2 |

Signatures produced by this mechanism will be taken from the start of the full 16-byte HMAC
output.

Table 10106-4444, General-length MD2-HMAC: Key And Data Length Constraints ‘

Function Key type Data length Signature length
C_Sign generic secret any 0-16, depending on parameters
C_Verify generic secret any 0-16, depending on parameters

10.25.3 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2_HMAC, is a special case of the general-
length MD2-HMAC mechanism in Section 10.25.216:25.2.

It has no parameter, and always produces an output of length 16.

10.25.4 MD2 key derivation

MD2 key derivation, denoted CKM_MD2_KEY_DERIVATION, is a mechanism which provides
the capability of deriving a secret key by digesting the value of another secret key with MD2.

The value of the base key is digested once, and the result is used to make the value of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of MD2).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:
The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key

can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-203213 | Page 20t

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set

to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

10.26 MD5 mechanisms

10.26.1 MD5

The MD5 mechanism, denoted CKM_MDY5, is a mechanism for message digesting, following the
MD5 message-digest algorithm defined in RFC 1321.

Cawsainthavetapdeagtéterf input and output data are summarized in the following table. For
single-part digesting, the data and the digest may begin at the same location in memory.

Table 1016-4545, MD5: Data Length Constraints

Function Data length Digest length
C_Digest any 16

10.26.2 General-length MD5-HMAC

The general-length MD5-HMAC mechanism, denoted CKM_MD5 HMAC GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the MD5
hash function. The keys it uses are generic secret keys.

It has a parameter, a CKA_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-16 (the output size of MD5 is 16 bytes).
Signatures produced by this mechanism will be taken from the start of the full 16-byte HMAC
output.

Table 1016-4646, General-length MD5-HMAC: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign generic secret any 0-16, depending on parameters
C_Verify generic secret any 0-16, depending on parameters

10.26.3 MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5 HMAC, is a special case of the general-
length MD5-HMAC mechanism in Section 10.26.210:26:2.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 204214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

It has no parameter, and always produces an output of length 16.

10.26.4 MDS?5 key derivation

MD?5 key derivation, denoted CKM_MD5 _KEY_DERIVATION, is a mechanism which provides
the capability of deriving a secret key by digesting the value of another secret key with MD5.

The value of the base key is digested once, and the result is used to make the value of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of MD5).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-205213 | Page 20¢

10.27 SHA-1 mechanisms

10.27.1 SHA-1

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechanism for message digesting, following

the Secure Hash Algorithm defined in FIPS PUB 180 --as-subseguently-amended-by-NIST-1.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table. For
single-part digesting, the data and the digest may begin at the same location in memory.

Table 1016-4747, SHA-1: Data Length Constraints ‘

Function Input length Digest length
C_Digest any 20

10.27.2 General-length SHA-1-HMAC

The general-length SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAC_GENERAL, is a
mechanism for signatures and verification. It uses the HMAC construction, based on the SHA-1
hash function. The keys it uses are generic secret keys.

It has a parameter, a CKA_MAC_GENERAL_PARAMS, which holds the length in bytes of the
desired output. This length should be in the range 0-20 (the output size of SHA-1 is 20 bytes).
Signatures produced by this mechanism will be taken from the start of the full 20-byte HMAC
output.

Table 1016-4848, General-length SHA-1-HMAC: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign generic secret any 0-20, depending on parameters
C_Verify generic secret any 0-20, depending on parameters

10.27.3 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAQC, is a special case of the general-
length SHA-1-HMAC mechanism in Section 10.27.210:272.

It has no parameter, and always produces an output of length 20.

10.27.4 SHA-1 key derivation
SHA-1 key derivation, denoted CKM_SHAl KEY_DERIVATION, is a mechanism which

provides the capability of deriving a secret key by digesting the value of another secret key with
SHA-1.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 206214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

The value of the base key is digested once, and the result is used to make the value of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 20 bytes (the output size of SHA-1).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more than 20 bytes, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:
The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.
If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.
Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set

to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

10.28 FASTHASH mechanisms

10.28.1 FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message digesting,
following the U. S. government’s algorithm.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-207213 |

Page 20

Table 1016-4949, FASTHASH: Data Length Constraints

Function Input length Digest length
C_Digest any 40

10.29 Password-based encryption mechanism parameters

CK_PBE_PARAMS

CK_PBE_PARAMS is a structure which provides all of the necessary information required by the
CKM_PBE mechanisms (see PKCS#5 for information on the PBE generation mechanisms). It is
defined as follows:

typedef struct CK PBE PARAMS {
CK _CHAR PTR plnitVector;
CK_CHAR PTR pPasswor d;
CK_ULONG ul Passwor dLen;
CK_CHAR PTR pSal t;
CK_ULONG ul Sal t Len;
CK ULONG ul I terati on;

} CK_PBE_PARAMS,

The fields of the structure have the following meanings:

pInitVector pointer to the location that receives the 8-byte initialization
vector (IV);

pPassword points to the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;
pSalt points to the salt to be used in the PBE key generation;
usSaltLen length in bytes of the salt information;

uslteration number of iterations required for the generation.
CK_PBE_PARAMS PTR

CK_PBE_PARAMS PTR points to a CK PBE PARAMS structure. It is implementation-
dependent.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 208214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

10.30 Password-based encryption mechanisms

10.30.1 MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE MD2 DES CBC, is a mechanism used for
generating a DES secret key and an initialization vector by using a password and a salt value and
the MD2 digest algorithm. This functionality is defined in PKCS#5.

It has a parameter, a CK_PBE PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

10.30.2 MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, is a mechanism used for
generating a DES secret key and an initialization vector by using a password and a salt value and
the MD5 digest algorithm. This functionality is defined in PKCS#5.

It has a parameter, a CK_PBE PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

10.30.3 MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5 CAST _CBC, is a mechanism used for
generating a CAST secret key and an initialization vector by using a password and a salt value
and the MD?5 digest algorithm. This functionality is essentially that defined in PKCS#5.

It has a parameter, a CK_PBE PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism is-may be specified in the supplied
template; if it is not present in the template, it defaults to 8 bytes. 8-byteslong-

10.30.4 MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism used for
generating a CAST3 secret key and an initialization vector by using a password and a salt value
and the MD?5 digest algorithm. This functionality is essentially that defined in PKCS#5.

It has a parameter, a CK_PBE PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism is-may be specified in the supplied
template; if it is not present in the template, it defaults to 8 bytes. 8-byteslong-

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-209213

Page 20¢

10.30.5 MD5-PBE for CAST5-CBC

MD5-PBE for CAST5-CBC, denoted CKM_PBE_MD5 CAST5 CBC, is a mechanism used for
generating a CASTS5 secret key and an initialization vector by using a password and a salt value
and the MD?5 digest algorithm. This functionality is essentially that defined in PKCS#5.

It has a parameter, a CK_PBE PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST5 key generated by this mechanism is-may be specified in the supplied
template; if it is not present in the template, it defaults to 8 bytes. 8-byteslong-

10.30.6 SHA1-PBE for CAST5-CBC

SHAI1-PBE for CAST5-CBC, denoted CKM PBE SHA1 CAST5 CBC, is a mechanism used for
generating a CAST5 secret key and an initialization vector by using a password and a salt value
and the SHAI1 digest algorithm. This functionality is essentially that defined in PKCS#b5.

It has a parameter, a CK PBE PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied buffer
which will receive the 8-byte 1V generated by the mechanism.

The length of the CAST5 key generated by this mechanism may be specified in the supplied
template; if it is not present in the template, it defaults to 8 bytes.

10.31 SET mechanism parameters

CK_KEY_WRAP_SET_OAEP_PARAMS

CK_KEY_WRAP_SET _OAEP_PARAMS is a structure that provides the parameters to the
CKM_KEY_WRAP_SET_OAEP mechanism. It is defined as follows:

typedef struct CK KEY WRAP SET QAEP_PARAMB {
CK_BYTE bBC,
CK_BYTE_PTR pX;
CK_ULONG ul XLen;

} K KEY_WRAP_SET_QAEP_PARANS;

The fields of the structure have the following meanings:
bBC block contents byte
pX extra data

ulXLen length in bytes of extra data

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 210214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_KEY_WRAP_SET OAEP _PARAMS_PTR

CK_KEY_WRAP_SET_OAEP_PARAMS _PTR points to a
CK_KEY_WRAP_SET_OAEP_PARAMS structure. It is implementation-dependent.

10.32 SET mechanisms

10.32.1 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted CKM_KEY_WRAP_SET_OAEP, is a
mechanism for wrapping and unwrapping DES keys (and possibly some extra data) with RSA
keys. This mechanism is defined in the SET protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS structure. This structure holds
the “Block Contents” byte of the data, as well as any extra data. If no extra data is present, that is
indicated by the ulXLen field having the value 0.

When this mechanism is used to unwrap a key, the extra data is returned following the
convention described in Section 9.29:2 on producing output. If the inputs to C_UnwrapKey are
such that the extra data is not returned (e.g., the buffer supplied in the
CK_KEY_WRAP_SET_OAEP_PARAMS structure is NULL_PTR), then the unwrapped key
object will not be created, either.

Note that when this mechanism is used to unwrap a key, the bBC and pX fields of the parameter
supplied to the mechanism may be modified.

If an application uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it is general
preferable to simply allocate a 128-byte buffer for the extra data (the extra data is never larger
than 128 bytes), rather than calling C_UnwrapKey twice. Each call of C_UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be performed, and this
overhead can be avoided by this means.

10.33 LYNKS mechanisms

10.33.1 LYNKS key wrapping

The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, is a mechanism for
wrapping and unwrapping secret keys with DES keys. It can wrap any 8-byte secret key, and it
produces a 10-byte wrapped key, containing a cryptographic checksum.

It does not have a parameter.
When unwrapping a key with this mechanism, if the cryptographic checksum does not check out
properly, an error is returned. In addition, if a DES key or CDMF key is unwrapped with this

mechanism, the parity bits on the wrapped key must be set appropriately; if they are not set
properly, an error is returned.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-211213

Page 211

10.34 SSL mechanism parameters

CK_SSL3 RANDOM_DATA

CK_SSL3_ RANDOM_DATA is a structure which provides information about the random data
of a client and a server in an SSL context. This structure is used by both the
CKM_SSL3_MASTER_KEY_DERIVE and the CKM_SSL3 KEY_AND_MAC_DERIVE
mechanisms. It is defined as follows:

typedef struct CK SSL3 RANDCM DATA {
CK BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK BYTE_PTR pSer ver Random
CK_ULONG ul Server Randonien;

} COK_SSL3_RANDCOM DATA;

The fields of the structure have the following meanings:
pClientRandom pointer to the client’s random data. (see SSL 3.0 for details)
ulClientRandomLen length in bytes of the client’s random data
pServerRandom pointer to the server’s random data. (see SSL 3.0 for details)

ulServerRandomLen length in bytes of the server’s random data

CK_SSL3_MASTER_KEY_DERIVE_PARAMS

CK_SSL3_MASTER_KEY_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_SSL3 MASTER_KEY_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3 MASTER KEY DER VE PARAMS {
CK_SSL3_RANDOM DATA Randoni nf o;
CK _VERSI ON_PTR pVer si on;

} OK_SSL3_NASTER KEY_DERI VE_PARAVS;

The fields of the structure have the following meanings:
RandomInfo client’s and server’s random data information.
pVersion pointer to a CK_VERSION structure which receives the
SSL protocol version information (see SSL 3.0 for details)
CK_SSL3 MASTER_KEY_DERIVE_PARAMS PTR

CK_SSL3_MASTER_KEY_DERIVE_PARAMS PTR points to a
CK_SSL3_MASTER_KEY_DERIVE_PARAMS structure. It is implementation-dependent.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 212214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

CK_SSL3 KEY_MAT OUT

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles after
performing a C_DeriveKey function with the CKM_SSL3 KEY_AND_MAC_DERIVE
mechanism. It is defined as follows:

typedef struct CK SSL3 KEY NMAT _QUT {
CK_CBJECT_HANDLE hd i ent MacSecret ;
CK_CBJECT_HANDLE hServer MacSecret ;
CK_OBJECT_HANDLE hd i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_ BYTE_PTR plVd i ent;
CK_BYTE_PTR p | VServer;

} OK SSL3 _KEY_MAT_QUT;

The fields of the structure have the following meanings:
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientKey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

plVClient pointer to a location which receives the initialization vector
(V) created for the client, if any (see SSL 3.0 for details)

plVServer pointer to a location which receives the initialization vector
(V) created for the server, if any (see SSL 3.0 for details)

CK_SSL3 KEY_MAT OUT PTR

CK_SSL3_ KEY_MAT _OUT_PTR points to a CK_SSL3_KEY_MAT_OUT structure. It is
implementation-dependent.

CK_SSL3 KEY_MAT PARAMS

CK_SSL3_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM _SSL3 KEY_AND_MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3_KEY NAT PARANS {

CK_ULONG ul MacSi zel nBits;

CK_ULONG ul KeySi zel nBi t s;

CK LONG ul I VSi zel nBit s;

CK BBOCOL bl sExport;

CK_SSL3_RANDOM DATA Randoni nf o;

CK_SSL3_KEY_NAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK SSL3_KEY NAT_PARAMS;

The fields of the structure have the following meanings:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMEGHANISMS Page-213213 | Page 21¢

ulMacSizelnBits establishes the length (in bits) of the MACing keys agreed
upon during the protocol handshake phase (see SSL 3.0 for
details)

ulKeySizelnBits establishes the length (in bits) of the secret keys agreed
upon during the protocol handshake phase (see SSL 3.0 for
details)

ullVSizelnBits establishes the length (in bits) of the IV agreed upon during
the protocol handshake phase. If no 1V is required, the
length should be set to 0 (see SSL 3.0 for details)

blsExport a boolean value which indicates whether the keys have to
be derived for an export version of the protocol (see SSL 3.0
for details)
RandomInfo client’s and server’s random data information.

pReturnedKeyMaterial points to a CK_SSL3_KEY_MAT_OUT structures which
receives the handles for the keys generated, as well as the
IVs when required (see SSL 3.0 for details)

CK_SSL3 KEY_MAT PARAMS PTR

CK_SSL3_KEY_MAT_PARAMS_PTR points to a CK_SSL3 _KEY_MAT_PARAMS structure. It
is implementation-dependent.

10.35 SSL mechanisms

10.35.1 Pre_master key generation

Pre_master key generation in SSL 3.0, denoted CKM_SSL3 PRE_MASTER_KEY_GEN, is a
mechanism which generates a 48-byte generic secret key. It is used to produce the "pre_master"
key used in SSL version 3.0.

It has one parameter, a CK_VERSION structure, which provides the client’s SSL version number.

The mechanism contributes to the CKA_CLASS, CKA _KEY_TYPE, and CKA_VALUE attributes
to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template).
Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 48. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure both indicate 48 bytes.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 214214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

10.35.2 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3 MASTER_KEY_DERIVE, is a mechanism
used to derive one 48-byte generic secret key from another 48-byte generic secret key. It is used
to produce the "master_secret" key used in the SSL protocol from the "pre_master” key. This
mechanism returns the value of the client version found in the "pre_master" key as well as a
handle to the derived "master_secret" key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which allows for
the passing of random data to the token as well as the returning of the protocol version number
which is part of the pre-master key. This structure is defined in Section 10.34106-34.

The mechanism contributes to the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes
to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the template).
Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC _SECRET, and the
CKA _VALUE_LEN attribute has value 48. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on
some default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as
its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure both indicate 48 bytes.

10.35.3 Key and MAC derivation

Key, MAC and IV derivation in SSL 3.0, denoted CKM_SSL3 KEY_AND_MAC_DERIVE, is a
mechanism is used to derive the appropriate cryptographic keying material used by a
"CipherSuite" from the "master_secret" key and random data. This mechanism returns the key
handles for the keys generated in the process, as well as the initialization vectors (IVs) created.

It has a parameter, a CK_SSL3_KEY_MAT_PARAMS structure, which allows for the passing of
random data as well as the characteristic of the cryptographic material for the given CipherSuite
and a pointer to a structure which receives the handles and IVs which were generated. This
structure is defined in Section 10.3410:34.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-215213

Page 21¢

This mechanism contributes to the creation of four distinct keys on the token and returns two Vs
(if IVs are requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The two MACing keys (“client_write. MAC_secret" and "server_write_ MAC_secret") are always
given a type of CKK_GENERIC_SECRET. They are flagged as valid for signing, verification
(they are used for MACing), and derivation operations.

The other two keys ("client_write_key" and "server_write_key") are typed according to
information found in the template sent along with this mechanism during a C_DeriveKey
function call. By default, they are flagged as valid for encryption, decryption, and derivation
operations.

All four keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key. The
template provided to C_DeriveKey may not specify values for any of these attributes which
differ from those held by the base key.

Note that the CK _SSL3_ KEY_MAT _OUT structure pointed to by the
CK_SSL3_KEY_MAT_PARAMS structure’s pReturnedkeyMaterial field will by modified by the
C_DeriveKey call; in particular, the four key handle fields in the CK_SSL3 KEY_MAT_OUT
structure will be modified to hold handles to the newly-created keys. In addition, the buffers
pointed to by the CK_SSL3 KEY_MAT_OUT structure’s plVClient and plVServer fields will have
IVs returned in them (if 1Vs are requested by the caller). Therefore, these two fields must point to
buffers with sufficient space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For other mechanisms, the C_DeriveKey function returns a single key handle as a
result of a successful completion. However, since the CKM_SSL3 KEY_AND_MAC_DERIVE
mechanism returns all of its key handles in the CK_SSL3_KEY_MAT_OUT structure pointed to
by the CK_SSL3 KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be created on
the token.

10.35.4 MD5 MACing in SSL 3.0
MD5 MACIing in SSL3.0, denoted CKM_SSL3 MD5 MAC, is a mechanism for single- and
multiple-part signatures (data authentication) and verification using MD5, based on the SSL 3.0

protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 216214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Table 1016-5058, MD5 MACIing in SSL 3.0: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign generic secret any 4-8, depending on parameters
C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of generic secret key sizes, in bits.

10.35.5 SHA-1 MACingin SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3 SHA1 MAC, is a mechanism for single- and
multiple-part signatures (data authentication) and verification using SHA-1, based on the SSL 3.0
protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in bytes of the
signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 1016-515%, SHA-1 MACIing in SSL 3.0: Key And Data Length Constraints

Function Key type Data length Signature length
C_Sign generic secret any 4-8, depending on parameters
C_Verify generic secret any 4-8, depending on parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure specify the supported range of generic secret key sizes, in bits.

10.36 Parameters for miscellaneous simple key derivation mechanisms

CK_KEY_DERIVATION_STRING DATA

CK_KEY_DERIVATION_STRING_DATA is a structure that holds a pointer to a byte string and
the byte string’s length. It provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA, CKM_CONCATENATE_DATA_AND_BASE,
and CKM_XOR_BASE_AND_DATA mechanisms. It is defined as follows:

typedef struct CK KEY DER VATI ON_STRI NG DATA {
CK_BYTE_PTR pbDat a;
CK_ULONG ul Len;

} COK_KEY_DERI VATI ON_STRI NG _DATA,

The fields of the structure have the following meanings:

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-217213

Page 21:

pData pointer to the byte string

ulLen length of the byte string

CK_KEY_DERIVATION_STRING _DATA_PTR

CK_KEY_DERIVATION_STRING_DATA PTR points to a
CK_KEY_DERIVATION_STRING_DATA structure. It is implementation-dependent.

CK_EXTRACT_PARAMS

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base key should be
used as the first bit of the derived key. It is defined as follows:

typedef K ULONG OK_EXTRACT PARANS;

CK_EXTRACT PARAMS PTR

CK_EXTRACT_PARAMS _PTR points to a CK_EXTRACT_PARAMS. It is implemenation-
dependent.

10.37 Miscellaneous simple key derivation mechanisms

10.37.1 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE_BASE_AND_KEY , derives a secret key from
the concatenation of two existing secret keys. The two keys are specified by handles; the values
of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the key
value information which is appended to the end of the base key’s value information (the base key
is the key whose handle is supplied as an argument to C_DeriveKey).

For example, if the value of the base key is 0x01234567, and the value of the other key is
0x89ABCDEF , then the value of the derived key will be taken from a buffer containing the string
0x0123456789ABCDEF .

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of

the values of the two original keys.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 218214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by concatenating the two
original keys’ values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If either of the two original keys has its CKA_SENSITIVE attribute set to TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either from the
supplied template or from a default value.

Similarly, if either of the two original keys has its CKA_EXTRACTABLE attribute set to
FALSE, so does the derived key. If not, then the derived key’s CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default value.

The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if both of
the original keys have their CKA_ALWAYS_SENSITIVE attributes set to TRUE.

Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if both of the original keys have their CKA_NEVER_EXTRACTABLE attributes set to
TRUE.

10.37.2 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE_BASE_AND_DATA, derives a secret key by
concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the length and value of the data which will be appended to the base key to derive
another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF , then the value of the derived key will be taken from a buffer containing the string
0x0123456789ABCDEF .

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of
the value of the original key and the data.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-219213

Page 21¢

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by concatenating the original
key’s value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

10.37.3 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret key by
prependting data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the length and value of the data which will be prepended to the base key to
derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF , then the value of the derived key will be taken from a buffer containing the string
Ox89ABCDEF01234567 .

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the lengths of
the data and the value of the original key.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 220214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by concatenating the data and
the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

10.37.4 XORing of a key and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which
provides the capability of deriving a secret key by performing a bit XORing of a key pointed to by
a base key handle and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA structure,
which specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF , then the value of the derived key will be taken from a buffer containing the string
0x88888888 .

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the minimum of the
lengths of the data and the value of the original key.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

MECHANISMS MECHANISMSMESHAMNISMS Page-221213

Page 221

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of the
data and the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

10.37.5 Extraction of one key from another key

Extraction of one key from another key, denoted CKM_EXTRACT _KEY_FROM KEY, is a
mechanism which provides the capability of creating one secret key from the bits of another
secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the
original key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-
byte value 0x329F84A9 . We will derive a 2-byte secret key from this key, starting at bit position
21 (i.e., the value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001 . We
regard this binary string as holding the 32 bits of the key, labelled as b o, by, ..., ba.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit by;. We
obtain the binary string 1001 0101 0010 0110 .

3. The value of the new key is thus 0x9526 .

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 222214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

Note that when constructing the value of the derived key, it is permissible to wrap around the
end of the binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for
the derivation to succeed.

If no length or key type is provided in the template, then an error will be returned.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in the template. If it doesn’t, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and
length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the key will
be set properly.

If the requested type of key requires more bytes than the original key has, an error is generated.
This mechanism has the following rules about key sensitivity and extractability:

If the base key has its CKA_SENSITIVE attribute set to TRUE, so does the derived key. If
not, then the derived key’s CKA_SENSITIVE attribute is set either from the supplied
template or from a default value.

Similarly, if the base key has its CKA_EXTRACTABLE attribute set to FALSE, so does the
derived key. If not, then the derived key’s CKA_EXTRACTABLE attribute is set either from
the supplied template or from a default value.

The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to TRUE if and only if the
base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE.

Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to TRUE if and
only if the base key has its CKA_NEVER_EXTRACTABLE attribute set to TRUE.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

CRYPTOKI TIPS AND REMINDERSCRYPTOKI TIPS AND REM INDERSMEEHANISMS————Page 223213

Page 22:

11. Cryptoki tips and reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how Cryptoki
works.

11.1 Sessions

In Cryptoki, there are several different types of operations which can be “active” in a session. An
active operation is essentially one which takes more than one Cryptoki function call to perform.
The types of active operations are object searching; encryption; decryption; message-digesting;
signature with appendix; signature with recovery; verification with appendix; and verification
with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2 operations active
simultaneously if the token supports this; moreover, those two operations must be one of the four
following pairs of operations: digesting and encryption; decryption and digesting; signing and
encryption; decryption and verification.

If an application attempts to initialize an operation (make it active), but this cannot be
accomplished because of some other active operation(s), the application receives the error value
CKR_OPERATION_ACTIVE. This error value can also be received if the application attempts to
perform any of various operations which do not become “active”, but which require
cryptographic processing, such as using the token’s random number generator, or
generating/wrapping/unwrapping/deriving a key.

In general, different threads/processes of an application should not share sessions, unless they
are extremely careful not to make function calls at the same time. Sharing sessions can easily lead
to trouble.

11.2 Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) always possesses all
possible attributes for an object of its type. This means, for example, that a Diffie-Hellman private
key object always possesses a CKA_VALUE_BITS attribute, even if that attribute wasn’t specified
when the key was generated (in such a case, the proper value for the attribute is computed during
the key generation process).

In general, a Cryptoki function which requires a template for an object needs the template to
specify any atributes that are not specified elsewhere (explicitly or implicitly). If a template
specifies a particular atttribute more than once, the function can return
CKR_TEMPLATE_INVALID; or it can choose a particular value of the attribute from among
those specified, and use that value. In any event, object attributes are single-valued.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 224214 PKCS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.0 DRAFT 2

11.3 Signing with recovery

Signing with recovery is a general alternative to ordinary digital signatures which is supported
by certain mechanisms. Recall that for ordinary digital signatures, a signature of a message is
computed as some function of the message and the signer’s private key; this signature can then be
used (together with the message and the signer’s public key) as input to the verification process,
which yields a simple “signature valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private key.
However, to verify this signature, no message is required as input. Only the signature and the
signer’s public key are inputs to the verification process, and this process outputs either
“signature invalid” or the original message (if the signature was valid).

Consider a simple example with the CKM_RSA_C 509 mechanism. Here, a message is a byte
string which we will consider to be a number modulo n (the signer’s RSA modulus). When this
mechanism is used for ordinary digital signatures (signatures with appendix), a signature is
computed by raising the message to the signer’s private exponent modulo n. To verify this
signature, a verifier raises the signature to the signer’s public exponent modulo n, and accepts the
signature as valus if and only if the result matches the original message.

If CKM_RSA C 509 is used to create signatures with recovery, the signatures are produced in
exactly the same fashion. For this particular mechanism, any number modulo n is a valid
signature. To recover the message from a signature, the signature is raised to the signer’s public
exponent modulo n.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

APPENDIX A

Appendix A, Token profiles

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should support for
various common types of application. It is expected that these sets would be standardized as
parts of the various applications, for instance within a list of requirements on the module that
provides cryptographic services to the application (which may be a Cryptoki token in some
cases). Thus, these profiles are intended for reference only at this point, and are not part of this

standard.

The following table summarizes the mechanisms relevant to three common types of application:

Table A-1, Mechanisms and profiles

Page 225223

Mechanism

Application

Privacy-Enhanced
Mail

Government
Authentication-only

Cellular Digital
Packet Data

CKM_RSA_PKCS_KEY_PAIR_GEN

v

CKM_RSA_PKCS

v

CKM_RSA_9796

CKM_RSA_X_509

CKM_DSA_KEY_PAIR_GEN

CKM_DSA

CKM_DH_PKCS_KEY_PAIR_GEN

CKM_DH_PKCS_DERIVE

CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

CKM_RC2_MAC

CKM_RC4_KEY_GEN

CKM_RC4

CKM_DES_KEY_GEN

CKM_DES_ECB

CKM_DES_CBC

CKM_DES_MAC

CKM_DES2_KEY_GEN

CKM_DES3_KEY_GEN

CKM_DES3_ECB

CKM_DES3_CBC

CKM_DES3_MAC

CKM_MD2

CKM_MD5

CKM_SHA_1

CKM_SHA_1_DERIVE

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 226226 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

A.1 Privacy-Enhanced Mail
Privacy-Enhanced Mail is a set of protocols and mechanisms providing confidentiality and
authentication for Internet electronic mail. Relevant mechanisms include the following (see RFC
1423 for details):

PKCS #1 RSA key pair generation (508-1024 bits)

PKCS #1 RSA (508-1024 bits)

DES key generation

DES-CBC

DES-ECB

double-length DES key generation

triple-DES-ECB

MD2

MD5
Variations on this set are certainly possible. For instance, PEM applications which make use only
of asymmetric key management do not need the DES-ECB or triple-DES-ECB mechanisms, or the
double-length DES key generation mechanism. Similarly, those which make use only of
symmetric key management do not need the PKCS #1 RSA or RSA key pair generation

mechanisms.

An “authentication-only” version of PEM with asymmetric key management would not need
DES-CBC or DES key generation.

It is also possible to consider “exportable” variants of PEM which replace DES-CBC with RC2-
CBC, perhaps limited to 40 bits, and limit the RSA key size to 512 bits.

A.2 Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in FIPS
PUB 186 for signatures and the Secure Hash Algorithm as defined in FIPS PUB 180—and

subsequently-amended-by-MNHISF-1 for message digesting. The relevant mechanisms include the
following:

DSA key generation (512-1024 bits)

DSA (512-1024 bits)

SHA-1

Note that this version of Cryptoki does not have a mechanism for generating DSA parameters.

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

APPENDIX A Page 227223

A.3 Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication. The basic
set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)
Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)

RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to 256 bits, but it
has been recommended that the size be increased to at least 512 bits.)

Note that this version of Cryptoki does not have a mechanism for generating Diffie-Hellman
parameters.

This is a DRAFT document. Copyright © 1994-7 RSA Laboratories

Page 228226 PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

APPENDIX B Page 229229

Appendix B, Comparison of Cryptoki and Other APIs

This appendix compares Cryptoki with the following cryptographic APIs:

ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems: An
Application Programing Interface, April 29, 1994

X/0pen GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZAertezza PCMCIA Crypto Card. It is at a level
similar to Cryptoki. The following table lists the FORTEZZA CIPG functions, together with the
equivalent Cryptoki functions:

Table B-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG

Equivalent Cryptoki

Cl_ChangePIN C_InitPIN, C_SetPIN

Cl_CheckPIN C_Login

Cl_Close C_CloseSession

Cl_Decrypt C_Decryptinit, C_Decrypt, C_DecryptUpdate, C_DecryptFinal
Cl_DeleteCertificate C_DestroyObiject

Cl_DeleteKey C_DestroyObiject

Cl_Encrypt C_Encryptlnit, C_Encrypt, C_EncryptUpdate, C_EncryptFinal
Cl_ExtractX C_WrapKey

Cl_GeneratelV

C_GenerateRandom

Cl_GenerateMEK

C_GenerateKey

Cl_GenerateRa

C_GenerateRandom

Cl_GenerateRandom

C_GenerateRandom

Cl_GenerateTEK

C_GenerateKey

Cl_GenerateX

C_GenerateKeyPair

Cl_GetCertificate

C_FindObijects

Cl_Configuration

C_GetTokenlInfo

Cl_GetHash C_Digestlnit, C_Digest, C_DigestUpdate, and C_DigestFinal
Cl_GetlV No equivalent

Cl_GetPersonalityList C_FindObjects

Cl_GetState C_GetSessioninfo

Cl_GetStatus C_GetTokenlnfo

Cl_GetTime C_GetTokenInfo

Cl_Hash C_Digestlnit, C_Digest, C_DigestUpdate, and C_DigestFinal
Cl_Initialize C_Initialize

Cl_InitializeHash

C_Digestlnit

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

Page 230228

PKCS #11: CRYTOGRAPHIC TOKEN INTERFACE STANDARD

FORTEZZA CIPG

Equivalent Cryptoki

Cl_InstallX

C_UnwrapKey

Cl_LoadCertificate

C_CreateObject

Cl_LoadDSAParameters

C_CreateObject

Cl_LoadlnitValues

C_SeedRandom

Cl_LoadlV C_Encryptlnit, C_Decryptinit
Cl_LoadK C_Signlnit
Cl_LoadPublickeyParameters | C_CreateObject

Cl_LoadPIN C_SetPIN

Cl_LoadX C_CreateObject

Cl_Lock Implicit in session management
Cl_Open C_OpenSession

Cl_RelayX C_WrapKey

Cl_Reset C_CloseAllSessions

Cl_Restore Implicit in session management
Cl_Save Implicit in session management
Cl_Select C_OpenSession
CI_SetConfiguration No equivalent

Cl_SetKey C_Encryptlnit, C_Decryptinit
Cl_SetMode C_Encryptlnit, C_Decryptinit
Cl_SetPersonality C_CreateObject

Cl_SetTime No equivalent

Cl_Sign C_Signinit, C_Sign

Cl_Terminate

C_CloseAllSessions

Cl_Timestamp

C_Signinit, C_Sign

Cl_Unlock

Implicit in session management

Cl_UnwrapKey

C_UnwrapKey

CIl_VerifySignature

C_Verifylnit, C_Verify

Cl_VerifyTimestamp

C_Verifylnit, C_Verify

Cl_WrapKey C_WrapKey
Cl_Zeroize C_InitToken
B.2 GCS-API

This proposed standard defines an API to high-level security services such as authentication of
identities and data-origin, non-repudiation, and separation and protection. It is at a higher level
than Cryptoki. The following table lists the GCS-API functions with the Cryptoki functions used
to implement the functions. Note that full support of GCS-API is left for future versions of
Cryptoki.

Table B-2, GCS-API vs. Cryptoki
GCS-API

Cryptoki implementation

Copyright © 1994-7 RSA Laboratories This is a DRAFT document.

APPENDIX B

Page 231229

GCS-API

Cryptoki implementation

retrieve_CC

release CC

generate_hash

C_Digestlnit, C_Digest

generate_random_number

C_GenerateRandom

generate_checkvalue

C_Signlnit, C_Sign, C_SignUpdate, C_SignFinal

verify_checkvalue

C_Verifylnit, C_Verify, C_VerifyUpdate,

C_VerifyFinal

data_encipher

C_Encryptinit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal

data_decipher

C_Decryptlnit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal

create CC

derive_key C_DeriveKey
generate_key C_GenerateKey
store_CC

delete CC

replicate_CC

export_key C_WrapKey
import_key C_UnwrapKey
archive_CC C_WrapKey
restore CC C_UnwrapKey

set _key state

generate_key_pattern

verify_key pattern

derive_clear_key

C_DeriveKey

generate_clear_key

C_GenerateKey

load_key parts

clear_key encipher

C_WrapKey

clear_key decipher

C_UnwrapKey

change_key context

load_initial_key

generate_initial_key

set_current_master_key

protect_under_new_master_key

protect_under_current_master_key

initialise_random_number_generator

C_SeedRandom

install_algorithm

de_install_algorithm

disable_algorithm

enable_algorithm

set_defaults

This is a DRAFT document.

Copyright © 1994-7 RSA Laboratories

