-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_util.py
64 lines (45 loc) · 1.87 KB
/
model_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
from Data_prep import generate_dataset
from model import seq2seq
from copy import deepcopy
class Early_Stopping:
def __init__(self, sess, saver, para):
self.sess = sess
self.saver = saver
self.epochs_to_wait = para.epochs_to_wait
self.test_loss_list = []
self.counter = 0
self.para = para
def add_loss(self):
self.test_loss_list.append(self.test_loss)
def save_best_model(self,test_loss):
self.test_loss = test_loss
self.add_loss()
if min(self.test_loss_list) == self.test_loss_list[-1]:
self.best_loss = self.test_loss
self.saver.save(self.sess, self.para.best_checkpoint_path)
self.counter = 0
else:
print('loss did not improve since test loss was {}'.format(self.best_loss))
self.counter += 1
def create_graph(para):
graph = tf.Graph()
with graph.as_default():
initializer = tf.glorot_uniform_initializer()
data_generator = generate_dataset(para)
with tf.variable_scope('model', initializer = initializer):
model = seq2seq(para, data_generator)
return graph, model
def create_valid_graph(para):
valid_para = deepcopy(para)
valid_para.mode = 'valid'
valid_para.encoder_dropout_rate = 0
valid_para.decoder_dropout_rate = 0
valid_graph, valid_model = create_graph(valid_para)
return valid_para, valid_graph, valid_model
def load_model(para, sess, model):
ckpt = tf.train.get_checkpoint_state(para.every_epoch_checkpoint_path)
if ckpt:
model.saver.restore(sess, para.every_epoch_checkpoint_path)
else:
sess.run(tf.global_variables_initializer())