-
Notifications
You must be signed in to change notification settings - Fork 0
/
Homework1.nb
1454 lines (1430 loc) · 63.1 KB
/
Homework1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 64475, 1446]
NotebookOptionsPosition[ 63431, 1414]
NotebookOutlinePosition[ 63839, 1431]
CellTagsIndexPosition[ 63796, 1428]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Homework 1", "Title",
CellChangeTimes->{{3.721269817754141*^9,
3.721269843294602*^9}},ExpressionUUID->"8bfc5a0f-6d44-47dd-85d1-\
3c6170e7ac27"],
Cell[TextData[{
"1) Determine the DFT of sequence",
StyleBox[" ", "InlineFormula"],
StyleBox["x", "InlineFormula",
FontSlant->"Italic"],
StyleBox["(n)=", "InlineFormula"],
StyleBox[Cell[BoxData[
FormBox[
SubscriptBox["R", "4"], TraditionalForm]], "InlineFormula",ExpressionUUID->
"4c0d2d8d-b437-4bb7-9731-59c9b8605e8f"], "InlineFormula"],
StyleBox["(n)", "InlineFormula"],
" with N=4, N=8 and N=16 by\nMatlab, and plot the figures;\n2) Determine the \
FT of sequence",
StyleBox[" ", "InlineFormula"],
StyleBox["x", "InlineFormula",
FontSlant->"Italic"],
StyleBox["(n)=", "InlineFormula"],
StyleBox[Cell[BoxData[
FormBox[
SubscriptBox["R", "4"], TraditionalForm]], "InlineFormula",ExpressionUUID->
"4aadd6b1-aa99-4ff2-a6ae-3c794a657715"], "InlineFormula"],
StyleBox["(n)", "InlineFormula"],
" by Matlab, and plot the figure;\n3) Compare figures and give the \
relationship between DFT and FT;"
}], "Text",
CellChangeTimes->{{3.721269848836919*^9, 3.7212699506367416`*^9},
3.7212701453818803`*^9, {3.7212702110166345`*^9,
3.7212702262845078`*^9}},ExpressionUUID->"263d91db-e619-475f-ae08-\
e67658c671fd"],
Cell[" ", "Text",
Editable->False,
Selectable->False,
CellFrame->{{0, 0}, {0, 0.5}},
ShowCellBracket->False,
CellMargins->{{0, 0}, {1, 1}},
CellElementSpacings->{"CellMinHeight"->1},
CellFrameMargins->0,
CellFrameColor->RGBColor[0, 0, 1],
CellSize->{
Inherited, 3},ExpressionUUID->"560c1bac-0536-4767-a348-1deb3c9228db"],
Cell[BoxData[{
RowBox[{
RowBox[{"myDFT", "[",
RowBox[{
RowBox[{"x_", "?", "VectorQ"}], ",",
RowBox[{"n_", "?", "IntegerQ"}]}], "]"}], ":=",
RowBox[{"With", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Wn", "=",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "2"}], "\[Pi]", "*",
RowBox[{"\[ImaginaryI]", "/", "n"}]}], "]"}], "^",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"i", "*", "j"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",",
RowBox[{"n", "-", "1"}]}], "}"}]}], "]"}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{"xn", "=",
RowBox[{"PadRight", "[",
RowBox[{"x", ",", "n"}], "]"}]}]}],
RowBox[{"(*", "\:4e0d\:8db3\:8865\:96f6", "*)"}], "\[IndentingNewLine]",
"}"}], ",", "\[IndentingNewLine]",
RowBox[{"Wn", ".", "xn"}]}],
RowBox[{"(*",
RowBox[{
RowBox[{"'", ".", "'"}], "\:662f\:70b9\:4e58"}], "*)"}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"myDFT", "[",
RowBox[{"x_", "?", "VectorQ"}], "]"}], ":=",
RowBox[{"myDFT", "[",
RowBox[{"x", ",",
RowBox[{"Length", "[", "x", "]"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.7186151840985413`*^9, 3.71861523005017*^9}, {
3.7186153119778557`*^9, 3.718615331380965*^9}, {3.718615451067811*^9,
3.7186155007426524`*^9}, {3.718615610026903*^9, 3.718615641142683*^9}, {
3.7186156766377125`*^9, 3.7186156781908016`*^9}, {3.7186165916190467`*^9,
3.7186166602179704`*^9}, {3.7186168064463344`*^9,
3.7186168353459873`*^9}, {3.7186169410560336`*^9,
3.7186169563159065`*^9}, {3.718618250890952*^9, 3.7186182538711224`*^9}, {
3.718618379001279*^9, 3.7186183948961887`*^9}, {3.7186192141750484`*^9,
3.7186192279208345`*^9}, {3.7186193927842646`*^9,
3.7186194202648363`*^9}, {3.718619505620718*^9, 3.7186195087038946`*^9}, {
3.718619575390709*^9, 3.71861960426036*^9}, {3.718620686010233*^9,
3.718620750770937*^9}, {3.718620897649338*^9, 3.7186209031166506`*^9}, {
3.7186210189102736`*^9, 3.7186210194083023`*^9}, {3.718621067872074*^9,
3.718621075791527*^9}, {3.718621248842425*^9, 3.718621295250079*^9}, {
3.718621382485069*^9, 3.7186213987650003`*^9}, {3.718625392022401*^9,
3.718625393812504*^9}, {3.7186255474312897`*^9, 3.7186255540306673`*^9}, {
3.7186677588731456`*^9, 3.71866779567525*^9}, {3.7206140486334677`*^9,
3.720614064970402*^9}, {3.7206140950361214`*^9, 3.720614098834339*^9},
3.7206146065283775`*^9},ExpressionUUID->"35e3b18e-9277-4f8c-8c38-\
e398c6599d81"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"n", "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"4", ",", "8"}], "}"}], ",",
RowBox[{"{",
RowBox[{"16", ",", "256"}], "}"}]}], "}"}]}], "}"}], ",",
RowBox[{"(*", "DFT\:4e2dN\:7684\:53d6\:503c", "*)"}],
"\[IndentingNewLine]",
RowBox[{"Grid", "[",
RowBox[{"(*", "\:6805\:683c\:5e03\:5c40", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Abs", "@",
RowBox[{"FourierSequenceTransform", "[",
RowBox[{
RowBox[{"Boole", "[",
RowBox[{
RowBox[{"t", "\[GreaterEqual]", "0"}], "&&",
RowBox[{"t", "<", "4"}]}], "]"}], ",", "t", ",",
"\[Omega]"}], "]"}]}], "//", "Evaluate"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\[Omega]", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLabel", "\[Rule]", "\"\<DTFT\>\""}], ",",
"\[IndentingNewLine]",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"\[Pi]", "/", "2"}], ",", "\[Pi]", ",",
RowBox[{"3",
RowBox[{"\[Pi]", "/", "2"}]}], ",",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",", "Automatic"}], "}"}]}],
",", "\[IndentingNewLine]",
RowBox[{"ImageSize", "\[Rule]", "Medium"}]}],
"\[IndentingNewLine]", "]"}], ",", "\[IndentingNewLine]",
"SpanFromLeft"}],
RowBox[{"(*", "\:4f7f\:5de6\:4fa7\:5143\:7d20\:6a2a\:8de8", "*)"}],
"\[IndentingNewLine]", "}"}], "\[IndentingNewLine]", "}"}], "~",
"Join", "~",
RowBox[{"(*", "\:8fde\:63a5DTFT\:4e0eDFT\:56fe\:50cf", "*)"}],
"\[IndentingNewLine]",
RowBox[{"Table", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"0", ",",
RowBox[{
RowBox[{"Length", "[", "#", "]"}], "-", "1"}]}], "]"}],
",", "#"}], "}"}], "\[Transpose]"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Range", "[",
RowBox[{"0", ",",
RowBox[{
RowBox[{"n", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}], "-", "1"}]}],
"]"}], ",",
RowBox[{"Abs", "@",
RowBox[{"myDFT", "[",
RowBox[{"#", ",",
RowBox[{"n", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}]}], "]"}]}]}], "}"}],
"\[Transpose]"}]}], "\[IndentingNewLine]", "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Origin\>\"", ",", "\"\<Fourier\>\""}], "}"}]}],
",", "\[IndentingNewLine]",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"StringForm", "[",
RowBox[{"\"\<DFT with N=`1`\>\"", ",",
RowBox[{"n", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}]}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Filling", "\[Rule]", "Axis"}]}], "\[IndentingNewLine]",
"]"}], "&"}], "@",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}]}], "}"}]}], "\[IndentingNewLine]",
"]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Alignment", "\[Rule]", "Center"}], ",", "\[IndentingNewLine]",
RowBox[{"Frame", "\[Rule]", "All"}]}], "\[IndentingNewLine]", "]"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJwdzEsowwEAx/F/LhtRGlpKylpjDzNcdqC2Nf8/zTJrxWjJQjO1rU07eOWV
oxzQkpITLmqZZ0grpo3sz2JmBy4OHvNYIgf5//6Hb5/bt8TqNHZnEARRxAR/
LDLpZuBZ3fHnksE9/101bC2wa+DV4zsJucdBCto4cgMUpvuMMEHSLZDzMWaG
O192G4zcinthrG3ZAfuF96xCbekgDJ8/jUNv+mIRXgem1uGCPFazxVhLxVmd
Sr4a7g/oWE00XQdnS12N8HVN3AybRKtGSIykTuCI4iYMc6NmGjqonEtoUJK/
MFvEy9xmdOerRLA4mVcOq3gH/AijdMMtgKTPWga1c0kJnFUnKuDnd1QFPW9x
PdQcdpkgN4Nohw+0xwJ9u22dMETNsyqCLz3sVz9pg42e0DAU5NaPQl1iYgZm
nTUswe5UpR96JSsBOK2Vn8Kho8Iw/AcctfwP
"],ExpressionUUID->"5422256e-dd28-4472-bee6-6ea1fc3a7c4d"],
Cell[BoxData[
TagBox[GridBox[{
{
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw1mnk4VO/7xxlkBjNnjDAoWSpSKWVpoftOolJC0SZEi5DwqRTSJkTJlpAl
JNKCJKQkIVsSsid7yDKTfe13vn/8/MH1upx5znnu+3me835d18jbnDc9ReHh
4blP/vrfX76PQlVdGje2Pfn3vx8CV/Tnb5UNtQJmW6X8LMkz6etONoWcB+0q
f99BkjMm4IfoKzdQldquVkdyz2K7qbch10Cta1b2Ncl3pUrpr/JuQcXqSmMf
kp8qW8TxvPKFj1+/lBiTXKDFWX/gcQCMedFuiJLcrO9dmBRyH5yr06+VLpD3
UxFR8SwMhh2qnYUXSfbdUO+alBcKF3+V7JEiefGWx3lVbx7AiMA9ycx5AuO3
2/NPvXwIFrFnVu0gWXW3+j755EiQvh54vWyOwDzjhQd7Hj8C4vi2pfok/7AK
UYoJiQP9xXrKCrPkfDaqbuoqfgxdD1Y/vDFDoJtWaKtbYTyonvi4t2GaQH44
viI+LxFCr+vdOzVFYLluYZlGzhO4uGeYHTtJYLC+klP5myRYvztrsHKCQFkj
7tvRl8ngt2K7E32cwG4T82N+qSnA3t6zZNkYgc/N8v4tSX4GgyKnxJVGCdx0
/PYu/cfPYcLjT48Ul0BTR6nmiJA0+Gn4VSxgkECRTfAx3CAdZEJ7l+3/QyAn
10W0ozgd5EfRnTZA4NsP9VkXCzNA6ZHBkhO/CdxR/HghNi8TTroGK0d3ELjS
oNa4f/MbuHTXJ5fVTqBQmUDixpw3cCT4UOy1NgKrK+0NSt9kwSO3t6e1Wwg8
XqcexH2ZDQZWD2i6dQSi+ZnOrWtyYOb1RWOHGgKXN0aq+6TmwEd73r/+1QQO
tCw0SifngufGtl0vK8n6dZXK6z3OA0sX5gmvIrI+fy0yw0M+wq2BdSsPvCbw
nniUdgG9APQ+BUS+TCOwJuP2Mg3TAriRQK+Ye0HgsQGLHtmWAjDqbXS6kkyg
0zFhl7+Dn2C46sDvP48IDNOx84tkFoEHK2ZZ9k0Cm5oOODDMiuDo3wm0vEbW
/xIY3YokWaNEe8aDwORXEovPKRRD5acPFcyLBL5bVhyH6iXQG2d4Pec0gb94
FbJ/HyoFM0NBxTEDcn6x9CiL6FKYdzfr699BoN2Wac/v7aXw8/JQah0Q+Ne1
WjfvbBk8WR6idkeLXB/dXlWBHuXAV7npjtNKAlVKWno04iohXN300RoKgVuL
9wjp/lcNnxddsL2TwUBm3dNvWqHVMLZUrfraCwZ2d1IerM2sBrX0LI5jMgMD
efKWSY1Ww8PMC4dWxzCwc+tqDY7rd6iQchLY7MdAv9fC1rGuNTBkUQdRFgys
j6vMmnGpg3/D0oJ+C3R8/krZgxNcB+nu+wyPTtHx+gdv7M2og4PNinGKf+m4
qkW74ju3DlK0HG4+6qGjp8TL9hSXH3B8VCVYrpKOivfuCR9yqYd37RYvbj6k
o7O70YlM50Y4d2dXar4SHfc4aadQgxqhOpBvLEaOvN5GZeR4WiMMpncSF6Xo
WL970VXqcCM4BotVCgnTUUcqP+K4QxOMRe/KrRsSQaGctdWCp5vhTubyuz0Z
Ipg0LgIWx1rhd4A6VVxdBM/lnAqkKLbD+LeTNr7ywuR+NpHjVW+HBDph/0ZS
GDlN2q//6bXD9JT6fCNdGC/MitXPnW4HAaHwVuqMELpvK1w6mdoOIU3Ll/HX
CKFPkezLPxs6wOtXQP6560L4uLqhok63E8bTpdM1G2hY17eblmzTDQlnjOSm
zlHRf90Ez9sjfeD0TvrgNm8BdFld+qAgaRDKHM/9ERWi4Iytw6ufThy4/yVp
/kX9HNh8MDcOOv0XZKOvmjePjIMtt66gwG8MBHbvmlkkOgR312eff+ozAU2e
g71Hkn9B+YaG3ouBEzCXLmfUpPsLqBqTx3eGT4BKs+fZS21t4L1Za2930gR8
F9l1TkiiDTx0s5UViifAVUj/SqxPK9gfzO6I4ZuE1MqO7uhzTWBwOfvAg+uT
EL2imJA/WAve7g3lJ/0mQXryheTz0Roo9Jzcrh40CY8W0TceDq2BbTe01tfG
TcInlXd7ltR+B03/bBHRj5NgzP/Mx/hgNSyPzi6+Oz8JWpBvJZ1XDpSCbC1v
9yn4Uh4TWq6WD6l01tP5m1MQteTwQEDiezA95rjYLWAKlCxE1IUk8iBxQo57
NnoKtjw7mYPz2aC31j91f/4UVHHOEs/rMmDQvZtdVjIFHYdV757dmw5hpdt8
db9NQefFM9r1d15Cj+2orUb7FPTUCrAuOieDT5TFUhnKNFRZVal5PQ4H1b63
AWFC06AlxKO0LiII6jVEZ+hi0zA6E9ZBXXkbvG452PnKTMPECklxfj1XUPpe
XM+zfBqOqJW73/xpDtWycjvd10xDvPz9YObTq3DZ0T1zVH0alhZ3UHiK/KFU
cF1Q785p+Nn679mx3ZHgbHZnwcpoGipvNsRrbIoDdmKXY5P5NLxacrS/PzgB
zm6L2F15ZhrA6FpKyuUUELrIy/f6zjS47b4kgVKv4XXhMZfVIdOgb8bfbx+Y
CUeZb389iZoGb8o50U+ULHj+3P79w+fTEPiff8hgXzbs7ay9ePXrNNRkvvuw
5vkHCNz/tG+X6Az4XBpzOXarCERVDKt+RcwAoTkeGeP/DXoF40RLH8/A04CU
lmbxanjX8/dgesoMyMhtm9l4uhpOxke1XM+ZATHPQ917F32HHPZAn3zjDHjy
Xf0lrlcDloJ3+E5KzkKFQrVzX1YdvOgu2dT3YBY+y1079dalCW4USntWx8xC
GbvENjmvCcwfO33MSZqFLa/MH54QaAYeCwn9O1mz8LLTcrVaRDMcqD11QOXH
LNz3de/fnNcCM5/4nRwXz0HAcQOdpomfsCtON5ETMgdb7g4Jlsl3gG9p9c+b
j+ZAhdr7UVC/A0q4lmzxJ3MQJSOwf7l9B+zU87i3OWsObDO2vpnI6ADd/ky3
mw1zsH/ccmABOkF744q9i5fMA5cdUHPfrAvWfxEc10qahytnZgeNTvfAec6D
deUv5+F8XqTwGp8eeCW13N7i7Tw8unVpa09SD6x1xF/Xv8xDqt6D6D/dPaAi
eqWsrH8eTjh70AxO9MLyYwMxx1QXQMPoCFX1wG+QHKnUv5a9ABcks0LPyfRD
RPDHE/0fFyC+r2FIU7Mf2OqvPQ+ULsB2s3fGrcYkX3n4WqlpAUqbhOh5t/tB
ms9GtnpmAczuqjh8GeoHWcnJcblt/yBtYvvpxdkDsBLkkwqL/sHfFSb+u1UH
4WmHWMGar//AtPHHRW+9QVjpvagl/Mc/+Lpss3vU0UFQKvvDdOj9B+1J3KxD
PoMQtupYPo2fB8O2NB6WaB2E8MwVKq9X8GDXTENk3PUhiPryjpfvLA8eDai4
+OnlMHDa06+MOPKgMaMpWyl/GAxmnnJbnHmwha566lzVMIytCe14c5kH9wVY
TYUPD4NRiMOn0348OGlc9tlm7QhQji+5UZ7Mg/p8jB0tT0bg8CXW9NvnPKhY
0LBLK3ME0u5TXRLTePBhi0yM66cRsCgcs/bM5kGVZIc1vj9H4K3SV1T9woOL
ltR1iwlxwOHvVZ6QXh6c6KxfnajDgULhC5e9Bngwfaegc8UODrBX2HPsh3lw
3tnSvGs3B0oOmbfvmOBBv/s3aJ1mHJD7oFowLsCLO22ShWXOcaDO99e1Iyt4
cWjB6pVHBAdU4n9M7lzFi9Gh+5VjYzhw413F+Q1rebF/b9yu9AQOqA5lWwlr
8KIzJdMr8QUH/EyD4IMeLx63X6gp/sgB7aXb/8md5MV3B9d/nenkwC6LOlcb
O14cXGxk4/ybAwcfnelNdOTFCP/Iipo/5HykAr+uvMiLWfUv5SzHOBAl3vJo
jQ8v8gro897n58LTg06Ekz8vKrVxbR2oXHgdynsrLZAX7x3mSVEX4UKZqLL9
hoe86Li3puWeGBem6Bc3bUrhxe3FI6uOyXOBfx/1xZUXvGjXMVcVu5wLzLuP
luWl8yKdVXPqmxIXlIQKF23L5cWaFdMuk2u5YL6I+LGjnBx/A4+B7WYu2OxM
2HW7ihddhPLeM7S54OSt8b6khhdHcqu1krdx4TbFInF3Cy92PC/ZFbeDC28W
Ulz2D/Kiwbu3ii/2cqFAR7sniMOLMUFlogVGXKj0/Ha4ZowXyx6Oynwy5kLX
zDiYzZP1aGwO8j/IheHNdzLDeSm43biN94A5F2YuL1FqFKDgOufbj6iHucCa
1GUcY1DQUOeH2dZjXJDVrL8RzaKgdoDy1RwLLqhcPDv+U4KCCvkXmhUsuaD5
Zs5umQwF+1xUXdytuLB99H6r9TIKJhTW63205sLeDYrGCYoU5Nkze5h7gguH
Xd5+7lKiYPoSzQymLRecR1pTT6+noI3RA23JU1zwVHWWTVGnoPnKNW4LJPud
4wvp30TBjZr5/LWnuRD2IlxgtQ4Fl9co9oed4ULcn1VXHLdT0CR3u7KeHRdS
VT4MvtxJwQUWraSd5Ldnja1HdlPwu4Nbif1ZLhSmdNWuN6LgwOvwtZ0kV/2+
ZOBqSkFerav/9O250LxSKC/TnII+ifswkuSeUzGq40cpmDivOdZIMufJ+gRN
Kwqaxl9YtsiBC3Ndn8Uv21Jw1zajEjmSqYqH7uSeIef7Q3JImeTFNgNzMw4U
jM5Ui5AlWS7+qrO2MwW/uVIreUle3c7svnqBgl/+Lr5XQ45v9Fuu8NJlCjZ2
P6l5QLLz8PrH5z0peL7Ujr6b5JBx9LK7TsEXbnLbB8nnfzNnbHHCm4LS4g9c
rpFcz3diy1E/Ch6gRSZQSJ4ScmEfuEvB5zzUxotkPaRZNyYMgyjY0Fci3kTW
T1squE4vjILXhz9brSHZUi7+tU4EBQfdJ3LPk/W+rpQRpBlN1kPNSjmR7EeC
6iendY8p6DokmFZykgtFGt/3Kj+hoORHPtNmsp+92h0q8ilk//udxNtsyHro
canSLyjo2+40/53s/15T0WLhN2S/uziG/uR6cToin8ifQ/Yn/c87I3I9BVmr
3ZjPo6B9qaMV33Eu1DmZ6Ix8pqAR99BRnaNcmLh4QqbvCwVf/bqVW0iuV/ZV
l+n2CgqKfc212nSICxYBwVk1tWQ/bq0OHTvABa+Q+NCKBgpyR1xWbTXlwuPI
DJeiFgq2xTSwXcn90Z38fe3bLgpWZFwRzyD3k2OR6NPIUbJeW0/QLuhxIbBC
3jtkkoKYn/pHR5cL6TVqNgGz5P2HR/ZOARfG2k1kr/LxYczxRY+3bSXX73xw
uLUYH+oe8RVjqXEhlj/hwhFJPnx/OPSytSq5X4Vfm5rK8GGRRpZ33Gry/JCu
Yegp8iG84DwdWcGFu5osX6WNfJg4uf5poxQXXukonJLT4kOWXET9CwkuVOtt
2CG1lQ8fSJxpdCHPo8UHTP8J7eBD5QiR01XkeRV9PsRt2JQPX4ww9WoWOPAy
hWWX5cqHo9Nn5mjtHPD+8XE7nxv5vMZX9jxo4YAF5ZyMiQcfRifVrScaOCBk
8aVq8BYf7lLhdld95cBpwlNj+QM+5NMR/uz1jjzfL/VQQrP5sEbnHCQHcWAy
IaS1PY8Pr8QY5C8L4EDVN3irWsCHWaL1B31vc+Dqqqiz5aV8ePK014CiOwea
W42qeZv5UGr29pNQGw6E7ciJcZ7jQ+utQ60H15PntfMpt3wefnTvDm4qXMUB
3RiWiYgAPy5LKr0sp8gB7oQjfwqdH1NLV39OFeeAUaq8wy9ZfpQtbCGmR0eA
KhqwyWg7Pz45NTm4+doIeLYdr13tw4894U8CV3mR71MDnZhT/vy4l9+v2ubc
MDhmLDkTF8iPH0qw1ctiGI55t8ywHvKj6eb2OKstw7BF5YjCTDI/Fiz5QCkZ
G4LpiwddSsv4MdAtv0Lr5BBcohsSp+gCuEhYtRnIvOCivckwNkwAYxoy38f9
1w88TmHX7kcIoPDhTWNFx/shMI6TeT1aAAsfrLv2w6AfUinPltg+EUBrPfOf
OWSe6SyVGlZ6I4DXVq9r8y/sg4Nms0EZtQJ49j5L45xIH2g65dcXsRYhtXtj
dHZwL8zE6dn8CVqE9Tvpp/tPd0G1c5S1W4IgDqyznVvl3QAqQczZC08FUWzn
e06XQQPcSvN54JoqiHx3PCb9hRtAc9i1/NxrQUzTS6LEh9RDjIOh+slCQbzg
b3jtb9wPsD89J2jSKYiD+vIZ5tm1wG9hmaaiQMXSvtYmgaxvYOlRt1t5JRVf
Gm6Xub7pG2RH7eleoULFJRoz9I68KrBv0pSS30DFPSqOMYcLv8J3c+KWpC4V
dW5dvbGqqgJiTQrM+W2oqG/7+7/nHV9gs4HCws94Kgr1dxlOjH8E9cRyvy9J
VDyTqvlYdj4fVP+5imU8o6JDH3+LKn8+KGR/VvbOoOLYqqPCQqz3IKxE5t9P
VHTsCL1bsCYHfi5KSbnUTsUN+y52NVimQ6ON8UbrbipOf92pmFn2Cmrypz7s
7qOi5Vh2UOyPF1ByaXftEg4VM/n3vN44lAJpvQPzhf+oeDk9MOqGTDyk6ob6
veCjYV72frH2fbHwJHarWLggDU/6XrVNOhkFEeZ3lc8SNDR6w7k5HhwCIa/V
M03FaKgo8OWriMk9uMv4qaMtScO++6aVkl63wcf+dukKGRoatqatWW7uATdK
1h4gltGwXOs7RdD6DHgq1P+cUqAhxdV0Vi1jP1zy8rLrXEnDXxHzf/ZG/wfO
zStHK1Ro+LJtx9oN8TfAXvPb1SxVGu74mrh+/YU7cDLEjRq3gby+NkHjXmIQ
WA4vC/XTpCG9aO3J8bthcOCpc8qxbTRc7e9REWIVDUYUqY07dWnoHPV10nr5
Y9hl+emDqj4NHaYb5/+wE0BbglXLa0TDF8I+JvW8T2GFT+Z88nEaKphG+n+v
eQllOzenYDQN/3MYqtlyMx8uf/FSvfaYhuvC00q2Bn0E5d1Fbz48oWHj56N/
iP0F4LN3/6ctL2no/X15donFJ9A7cKpZPZ+G7z6F5rq4fYYC62CRVe003K/2
2NHk2RfI9uh3Fl0uhKMCOvubZ79BUkbk5s7nQpjqUdeZJtcI4opr7C2fCeP4
od5A/pVdEBQSYP7spTCmcI4VNet2gRDlj+5YhjC+2f8pJdaqC3g6nsn4vxNG
oZvfRUYiumAwVulrVoUwlvLMrkoT6oYiacX19GFhtIyLlw8b6IYLLOmJvA0i
yLeZw7PuUS+M3LjSuUhLBCefXaDdzuoFe25jlclWEbzSGr6v+FsvWFc/TP69
QwRXnhhcys//G/YGih8RMxNBoc7oCTeH36AoJPre3k0EG99qu8lr9kENL/Wm
1Hvy81v1D5Xk9sPwy0hL4wIRzKts4i2q7gfa0dVbfYtEMPv6fPiz3/2Ar43G
xipFsGHmuOIa8QF4ZfPgdPVPEXQJ+7ZJ5PwABHxWMPT9J4ImvpS1y2X/gN5t
ncXjunR0oiXriZ8dBGu1b5zVBnRsiPgq0+05CB4/rb/aGNKxoO8jERE0CK81
vH2qD9Bx866cqVfZgyDXWz71/CQdjejxV8P5h2BO//BPGx862j5Io2yJHIIs
6n9Pq8voGLJCTUmP9JtezxtD+V/pZL7yGL70fhjY3PvqL7/T8ezNBtmgimHw
bHpReKeJjssERz0v9g+DXmpvm24/HS3bJG8ILR+BGsOjkllUBnoJyzoah40A
f4GdZaIIA/l2jSR2xo+AprpbUjCTgeHXVhw8mjYCUUvCNjqxGfhMIrprumwE
Tgx93a+kzMBdj2dUpuZHgBO43S/SgIGaV3LdXMn3jQKf8TdfQwa62O9asNUk
/cHNUuLSfgbeTF9XbaDNgRwrjyemhxioP9u6pdeAA9fWZxUIn2GgxrTO+auW
HGDUKE9f9WHg/qVL/Yk7HEB9LXT0Z2Bx25lkhUAOuL7b6Xs0kIG3aMNPlUI5
UJ9gI64VzsBmWfeNgqT/xPwXrcZJYqCTOqdWJp0Da8SZ9jbFDIyKyWp4UMsB
sbS8F0llDDzvWMFZ2siBmV1nRvq+MvCtq+J8WCsHSj3zL5yvZ2BEJqtmfw8H
TnY7XvP8zcAc4ezHk+McMPRiF378w0AZq8O+E9Mc2MAu4ufjMHDe3kype54D
PHtl/O9MMfAzz263AAEuxGSWhYXTCBRe0RdGW8wF730XG5roBDoN9N26Kknm
o99y0ktZBKLdtvFf0lzYInM5LlGaQDM31HMmfaj+5srU9NUEasrHtHwgfefD
kprB0XUE/gwYXp60ngtP3l5dp6VO4MtHl967b+SC60Ddmw/aBGrnz7znbOIC
w/TWx/J9BH5QkTIXJH1n/I8qhWFKYOsNMVvrnVxovd2sZ2JOoJIR+16yAZn3
c9XKGywJNG2+K8dD5rfgAz9FZGwJzNmCXqKkD10e8ttveYbAm0dudzDJvKcv
317XfZ7AE2++xTeR+XBtXoCk8gUCjawvjyaYkXnKTOuow2UC176e3niUzJOd
foG/uNcJnLpk4hBC5s8yhS0KGrfJ65NXHxIjfSj9fc/Jy3cIZPL0ytwk86oX
R3tgIZisV6yv9CrSf075963RDSfw0tna3Sf+l3+Xh52/HUU+//lSbV8yH2/M
h9elsQTeMNIajiLzs/ThP2PCiQROf587HE3ma96/4Vr7kwkUGeW9HEDm774A
XfeQ5wR2/tyqb0fm828rht//SCOwaux5/gYyv7/9GPmP/YbAr7VWrQMkxxzZ
qWuRQyD1oEtUEJn/vUc53nHvyXrfXzSmSPqBw73oL50F5PN0mXQ/IdlUaZfQ
ymICx8eCT4uRvrH50+jes2UE+rwRvXSeZLljcfdffCWw1kqZkUsydXxPzch3
Atf7bFbhkDwSOLF4Yz2B94SziheTfjPIkS1c20ygUO2JrStJHjA1OK/cRuDt
WmF/JZJ/vzm/RLGTwB4+6VdskrslIsqW9hJo8WkucZocr/NywSX2AIFB39fa
lZP8q7lPUWyYnO/J9ZP+JLdqi36n/yXnww7et/V//ha72Ys6QeDEZM+ZFnI+
jTw2q/lmCFS+UaXrQPIPG//G+XkCtZ6MNg+Q9Thr06Q7x8PEihLBtUdJtgs9
FzlNYeLP4hKNXLJ+p4t4ORP85P8nx7mCJJ8af6A/toiJB1RPWuqT9bc5lD86
LMREyVN2W0PIfp3wM90zKMLE5FsVSXFkP61zex/3M5h45Lfgm2iy38dlCKNu
FhN3nCbST5Hrw2Jv4pOOxUwkykYfqpE+dPSq1mybBBN7+bolh8j1dPiXVUqT
NBO7Am/VbSB93Jw5tlC/hIneARHCH45wwWy7n1mdLBPT3nt/0yR9yDQxnfJN
gYk3bSRHp0jf33eG93iRChPPmadZZe8j11/Eg8xPa5j4IaQo84MhF/aUrRL6
qMrEZy1i1zN3c2HXatPs3A1M/JxW6naO3G+6IwmiaVuYmC18PUFam/R7OS27
F9pM/DIj4Ra9mQtoUpH/bBuTfB9nZtC1uKCTOerwRJeJYcEPjfNJ/9nkplcS
uYeJ7lWec4dWckErpXHJw71MHNCxLT2oyAXNJsf/woyYyKLdHkA5cj9sfSB3
35SJIVuMVH6T/qP6r8fd+ygTXc60n3Eg/UbR13fdeXsmTnjpuZsMk+drvbqX
jSMTPYotvA8NcKBgRWelmRMTG83z/9vXywHLIm17bVcm+i/pnae2cSCK9+8T
mjsTL1ZcS8iv5ADL00L6yR0mFm3cY62YzIETFbSzDwOY2Cyea6iUwIF06exs
/3tMTN3yiiFDntdGuaJmLsFM3FI5ya4J4YD/RMn9bZFMXD73SM3rKgcoLmoC
TSlMLO4KX1G1nwMmBW0HKlOZKPhX9ei33Rx4TNxN+PiCiWvkY04U7ODAtle9
8DSdiR0sRr+LFgfc/zxy/y+HiUrLPrayZDnw99QiDr2UiYN3t7Miq0eg82hL
s+5vJg7dvfZZr2MYRHQOJVv3M5Gd5R/Z9m0YNJbV/uf1h6yP9qKbpvnD4NdV
LvJuhIn3ZlaFl0YNwzrHd9vUpph4afip4rAJ+f69GpmwjCaKnx+xB+Rzh0D8
8SH7ORVR3GC7n2ePwyBsu1mrKb1WFI0Vb35YazYIdif3821aJ4olR37JDG4b
hPfKBtH/bRTF5Sc866ZEB8EmQ7NqYKsovoy26zF9+wdeFYpvaNoril5/ig8T
UwOwq6d2OstJFPkbrqj+tOqHq6sDPdKcRdHk4PF1w/r98Npl13yKqyjafb7l
/mttP8gsvOeJviSKUtEn6LazfTAs8VTwppcoXlbrmh4O64OwXZfFjQJFsaXb
oUqu8De0P1+i1vtSFIdon1YpCfTCZddTdhJDolj13VG+el0n+BkOn9kyIorz
p5w3eIh0wsPlbmcsuaLY+Jxo4OvvgLf1fqefjovi7j9/JF/Fd8DolhcnNRfI
+y9uWGkn2gFOfKPW5gQLWR5vrvD8+AW2YdePhKuxcES23fq0YAu4nqMdebeR
hVOZvcVWOc1wUz/kcJsGC3dUzbmxzzbD46nEQyu3sPCeLPtgaVkTtFl8MXur
y0LrnQp/Vvg1wuEVDNP6AyzcSWQsm576AUZvH+2RuMTCBLEyAfqLarAbtfkn
fpmFD62ED88erYZb61XeiLuzMCpZ9koWrRpyUnOWinuxsLPyqqXM1ypQiPvB
EfNhoaetjFHi1kqY8CUeioaz0EG9ReyuwBdgFtcbikawcIP97ibK8RJYTYnl
EY1i4ZKEdQ/E3xSDtecae2YsC7kr5QnmiSIod96tQzxlYd6W9Rzrt58g9sit
LpG3LOzJ5T49GZMDOeF7IkRyWHhd6KmaOGZDba3oPpF3LKSu169f1JkFVKPH
b4XzWWhYOFiappgJrrof7giVsFDhAL3NRPs53L3mvU2olIURPEsLey6mQPJ7
w1FaOQurzp2yFniVBK2azRa0KhbKy8o8HpR6DBP/xYvSqlloc0XE4tyjKBDN
sCuh1rDw2tyuWAWeB7BmeJ0HtY6sV1rZyMTnQNBfPbmOWs/C8rU7ssdu3AJr
u/xuwUYW6rxeNuVzwRk8km5HCjaT/aBHPcuPOAzhnXuNBFtZeES1IGJ9pSek
L1vMJ9jGQtE95eM5+Xeg3KIle1E7CzVn5M65B4ZAT2SC46JOFoauDLhmixEg
vVitXqCXHO/4mVv69fGgbjLlL9BH1j9ZTvtk5hPYH/gRBAZY6Psk4EZncDJ4
U42e8Q+z8LxUYNKs6UsYnrP35JtgoQdtzDbf9Q0cOWy4anqSXG9/y7e5/MqC
oszV9cPTLNzL/yOpdG82RNoPrmueZ2Hk+tBUm1XvQK/xXFe6gBh2OQS6bRj4
CI8ynfdYiovhp41pIS1FxbDL/hI7V10MN8kNm89VVUN8w403Tv+JoYndnc2b
WD9hxk7H+sqsGHYsLH2/8dEgLJ0PPubivhgP6jyaG1kzDr0GAeVUfnHsjvMT
9M2eg88rK0E2QBz9Py1XeTHLi/bUp/zyNAn8seRm1+51Apj9eLnO52AJ5Ffh
NDkfpuLyf3oen0IlsFvolsVVWyoGHT+V+/GBBHrHby+/5URFO+mnGu8jJfBg
4FITL28qSocpqWbFS6Cs5KTLqnQqevqqLEvOkMCxXE2tA4toqOu0njfguwQe
uPVH+RvplVVbtYtNRSWRIpo8vrNPCP1zLs7qi0nif19Cgy5whdBAI01tq7gk
hhElEtEzQligqhCrKCWJjNQttT9EhDFTnuo2JieJe2Nag0bXC2OEYJ1y+HpJ
VLoyua/OTRhtax3uNu2XxAv61HkRHhGUM04q/GoiiTs36KUYU0WwtbJt6tMB
SbwdfyT7LlMEzUtMTqUeksS3OaLcITkR3JWrtc3DShK3nfOzPbhdBFXj+DhL
zkti1XL1hpfXRXDK/tEB60BJ3KiWZXp5WgTvuycKXguSxBKG9iIrXjqu9H+e
FxMiiXMGoxraNDqaPctTbAmXRINazmQTm46vf7eMmsVJokrR7jsJWnR0PLkk
zDBdEsVOnBA5+R8d24/H1GnWSGLHYTV6QBcd3c4lkYFCEsWNz45vGqAj4+pL
7Qv1krh4fkddK4eOOtEfnmQ0k+NZppxetEDHqOafF9Z0SZI+23ahXZKBBw/J
iiuMSeJ98av/XuxmYKlxnBldgo37mud075OeY1/Uky/IZuPCGt/piFQG0jet
UaZIs9GUNzkkMo2BpstyZyaWsvFIdIrNtVwGtgzVxLWvYGPWzffqPysZOOy/
aCBTg43qXx38fnEZGLSw98ArLTZe3DK403yCgRtdQ9+nbGaj1Brpgs8zDLx8
RO5+jA4bJQOTOm7yEUhR3qLuu5ONV7YHRgcvJlC8+JzXUTM2toTflhohvSRn
05vfBw+x8RhNOKF6E4FHX8wY7z/CRm3KeHEK6Smxob6KesfZuPGrQaO2Hpkr
beJL155iYzRH+e8o6Sna/+pYvBfZ+HLa5GS0E4FtrjKes5fYZB48XdLrQub8
3hM945fZ+C3DIFnpIoElX4ezBzzZ6Ph5pO2uB4H7o6nH67zJz1daTXf7Emiz
WTs5OYyNCuFpPuWkJ5wd+jreGs5GkyW1aRXxBDrHW+mxItm4Mnmus+AJgddo
tzo8Y9iYPSZg7ZtKYHRTmYzpUzam9DNveWcRmHjvmL1vChtHfu4vX0F6Qer2
oZz3qWxc5xdHz3tHYO4zprlSGhslovlvfvpIYP2VQ0Fz2WzUOBU6oUN6wM+1
/W1q79i4dtP3v14VBHZ3uK89856NubpCvzJJLxjdHVv+vYCNF1b+vTFNegFT
uoc/uYyNmkatlaNNBEpWXTrQWkHW8yBleV0LgbI3qQmiVWw04IxYp/wkvWtg
NXjWsPG7/0PfNR0E7nnnesWkhY2/Vk+eTfxNoIkTf6nPTzZGdvF9V+gn8LBC
uMT7X2T/lfzEw0lPOOOfm7mym432alYbDw+RHrbNkGLRy8ae5imhZNIbLv1t
NQ7uY6NN48P3/SMEeh/lGZ4dZKMi7UvqHtIjAhgh2mojbMTa5h67UQJDChUD
TnPZyJKbnXQfIzBexUD5+zgb907nxbqTnpHS1nhp0RRZ//YlG+wmCUwPsS/e
OsPGy/+EonZPEZg/c8/m6QIbrTfb9vyeJrD41bKMFh4pDLlW/uUJ6SWVNhn/
mHxSqGSe62k2S2CdxA4jfQEpXHboE98MyS3lddEeglK4J8fDImSO9D6v03/S
aVL4yPCOjyzpMQMbpjb3Ckuh6bWQG7Ekc3vv+MkwyOstDfaxFkhvjZJpMGZK
4aogq/4rJP8zernChyWFgUeizH6QvIgPLuQtlkL96Pzg5f8IpGdXF3IkpPB0
Q1TMGZIXO9iIrpSSwv+UBK7EkiyzbMzqmIwU+ui3KJaRrFB7+1XQUik8eJcS
+5tkFV/J+eJlUrhv+MzvaZLVtj4znJWXwv//fuP/ATs/wLo=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0},
ImageSize->Medium,
Method->{},
PlotLabel->FormBox["\"DTFT\"", TraditionalForm],
PlotRange->
NCache[{{0, 2 Pi}, {0., 3.999999999999959}}, {{0, 6.283185307179586}, {
0., 3.999999999999959}}],
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]},
Ticks->{{{0,
FormBox["0", TraditionalForm]}, {
NCache[Rational[1, 2] Pi, 1.5707963267948966`],
FormBox[
FractionBox["\[Pi]", "2"], TraditionalForm]}, {
NCache[Pi, 3.141592653589793],
FormBox["\[Pi]", TraditionalForm]}, {
NCache[Rational[3, 2] Pi, 4.71238898038469],
FormBox[
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "2"], TraditionalForm]}, {
NCache[2 Pi, 6.283185307179586],
FormBox[
RowBox[{"2", " ", "\[Pi]"}], TraditionalForm]}}, Automatic}],
"\[SpanFromLeft]"},
{
TemplateBox[{GraphicsBox[{{},
GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGAQA2IQjQo+2GOnGRxQ+RxofBhgwSEO0w8DHGj8G/ao+gkB
Us1H10eu/wRwiOO2HwBV8RW+
"], {{{}, {}, {}, {}, {}, {
Hue[0.67, 0.6, 0.6],
Opacity[0.2],
LineBox[{11, 1}],
LineBox[{12, 2}],
LineBox[{13, 3}],
LineBox[{14, 4}]}, {}, {
Hue[0.9060679774997897, 0.6, 0.6],
Opacity[0.2],
LineBox[{10, 5}]}}, {{}, {
RGBColor[0.24720000000000014`, 0.24, 0.6],
PointBox[{15, 16, 17, 18}]}, {
RGBColor[0.6, 0.24, 0.4428931686004542],
PointBox[{19, 20, 21, 22}]}, {}}}], {}}, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> True,
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, Method -> {},
PlotLabel -> FormBox[
InterpretationBox["\"DFT with N=\\!\\(TraditionalForm\\`4\\)\"",
StringForm["DFT with N=`1`", 4], Editable -> False],
TraditionalForm], PlotRange -> {{0, 3.}, {0, 2.5}},
PlotRangeClipping -> True,
PlotRangePadding -> {{0.06, 0.06}, {0.05, 0.05}}],
TemplateBox[{"\"Origin\"", "\"Fourier\""}, "PointLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.6, 0.24, 0.4428931686004542]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.6, 0.24, 0.4428931686004542]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{"RGBColor", "[",
RowBox[{
"0.24720000000000014`", ",", "0.24`", ",", "0.6`"}],
"]"}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{"RGBColor", "[",
RowBox[{
"0.6`", ",", "0.24`", ",", "0.4428931686004542`"}], "]"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "False"}]}], "]"}]& )]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )],
TemplateBox[{GraphicsBox[{{},
GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGBQBGIQjQo+2GOnGRxQ+RxofBgQgIv/+eAycd1zFgdU/TDA
4TDV4nZ1VeBHe1R9MCCCJi+BJi/jgGY+Dn8g7EM3H9087ObgMg/TP/j1DZ3w
BAClajwx
"], {{{}, {}, {}, {}, {}, {
Hue[0.67, 0.6, 0.6],
Opacity[0.2],
LineBox[{18, 1}],
LineBox[{19, 2}],
LineBox[{20, 3}],
LineBox[{21, 4}]}, {}, {
Hue[0.9060679774997897, 0.6, 0.6],
Opacity[0.2],
LineBox[{13, 5}],
LineBox[{14, 6}],
LineBox[{15, 8}],
LineBox[{16, 10}],
LineBox[{17, 12}]}}, {{}, {
RGBColor[0.24720000000000014`, 0.24, 0.6],
PointBox[{22, 23, 24, 25}]}, {
RGBColor[0.6, 0.24, 0.4428931686004542],
PointBox[{26, 27, 28, 29, 30, 31, 32, 33}]}, {}}}], {}},
AspectRatio -> NCache[GoldenRatio^(-1), 0.6180339887498948], Axes ->
True, AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, Method -> {},
PlotLabel -> FormBox[
InterpretationBox["\"DFT with N=\\!\\(TraditionalForm\\`8\\)\"",
StringForm["DFT with N=`1`", 8], Editable -> False],
TraditionalForm], PlotRange -> {{0, 7.}, {0, 4.}},
PlotRangeClipping -> True,
PlotRangePadding -> {{0.14, 0.14}, {0.08, 0.08}}],
TemplateBox[{"\"Origin\"", "\"Fourier\""}, "PointLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.6, 0.24, 0.4428931686004542]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.6, 0.24, 0.4428931686004542]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{"RGBColor", "[",
RowBox[{
"0.24720000000000014`", ",", "0.24`", ",", "0.6`"}],
"]"}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{"RGBColor", "[",
RowBox[{
"0.6`", ",", "0.24`", ",", "0.4428931686004542`"}], "]"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "False"}]}], "]"}]& )]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]},
{
TemplateBox[{GraphicsBox[{{},
GraphicsComplexBox[CompressedData["
1:eJxTTMoPSmViYGCwBGIQjQo+2GOnGRxQ+RxofBgQgItr/W/68+8fjwNM/58P
LhPXPWdxgOmXt/giaRH7xR5VHwyIOFx4PlFnp9lrqLyEw1SL29VVgR+hfBmH
nn/qoVJCz6F8BTT9SmjyKmj61dDM10DTr4XmPh009+s5oPkPDaCHCyz8YIAD
jS+CxpdA48ug8ZXQ+CpofDU0vhYaXweNr4fGRwek+gdd32h6IjY9AQAFQIXB
"], {{{}, {}, {}, {}, {}, {
Hue[0.67, 0.6, 0.6],
Opacity[0.2],
LineBox[{34, 1}],
LineBox[{35, 2}],
LineBox[{36, 3}],
LineBox[{37, 4}]}, {}, {
Hue[0.9060679774997897, 0.6, 0.6],
Opacity[0.2],
LineBox[{21, 5}],
LineBox[{22, 6}],
LineBox[{23, 7}],
LineBox[{24, 8}],
LineBox[{25, 10}],
LineBox[{26, 11}],
LineBox[{27, 12}],
LineBox[{28, 14}],
LineBox[{29, 15}],
LineBox[{30, 16}],
LineBox[{31, 18}],
LineBox[{32, 19}],
LineBox[{33, 20}]}}, {{}, {
RGBColor[0.24720000000000014`, 0.24, 0.6],
PointBox[{38, 39, 40, 41}]}, {
RGBColor[0.6, 0.24, 0.4428931686004542],
PointBox[{42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57}]}, {}}}], {}}, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> True,
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, Method -> {},
PlotLabel -> FormBox[
InterpretationBox["\"DFT with N=\\!\\(TraditionalForm\\`16\\)\"",
StringForm["DFT with N=`1`", 16], Editable -> False],
TraditionalForm], PlotRange -> {{0, 15.}, {0, 4.}},
PlotRangeClipping -> True,
PlotRangePadding -> {{0.3, 0.3}, {0.08, 0.08}}],
TemplateBox[{"\"Origin\"", "\"Fourier\""}, "PointLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.24720000000000014`, 0.24, 0.6]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, {
GraphicsBox[{{}, {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.6, 0.24, 0.4428931686004542]], {
Directive[
EdgeForm[{
Opacity[0.3],
GrayLevel[0]}],
RGBColor[0.6, 0.24, 0.4428931686004542]],
PointBox[
NCache[{
Scaled[{
Rational[1, 2],
Rational[1, 2]}]}, {
Scaled[{0.5, 0.5}]}]]}}}, AspectRatio -> Full,
ImageSize -> {10, 10}, PlotRangePadding -> None,
ImagePadding -> 1,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Times"}, Background -> Automatic, StripOnInput ->
False]& ), Editable -> True,
InterpretationFunction :> (RowBox[{"PointLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{"RGBColor", "[",
RowBox[{
"0.24720000000000014`", ",", "0.24`", ",", "0.6`"}],
"]"}], "]"}], ",",
RowBox[{"Directive", "[",
RowBox[{"RGBColor", "[",
RowBox[{
"0.6`", ",", "0.24`", ",", "0.4428931686004542`"}], "]"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2}], "}"}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "False"}]}], "]"}]& )]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )],
TemplateBox[{GraphicsBox[{{},
GraphicsComplexBox[CompressedData["
1:eJzt2nlQVdcdB/CrVkVrlMQkRqvwIMaoQQUXBHH5oeCGyOrC6uWxPR48wMQm
jRo9LlTT0RhtXIaxet0m7js2JmqPy0zHEhNLTDHB0WtcsO4ijUtQejuc28nv
2/7Tv/veP/jxNz/P495zzz1f5wQ4SxJzm2ua1qaFpv3rJ//cH/Hff2rE7QO2
P77//vuu0bELbjZ0ILt/U++TrXY8tO1DtyYeejfqqm1fimkTue+Lr2y/TB1P
r17Y6YDt1+iH0AM79eW2u1JebfzZDQW2HSS2xXxQG2E7kJ4dmNCdfGxbfwyp
7njkq/bKPej6xT1ve5bZ7klRhzaGu8bb7k3lx7YGnWh8QTmICkpLv1mxx3Zf
OhURM/1hiu1g6t04v+H583bKIaSXdHmlap3t/nRi809PfxduewBVDlyzYNzX
v1QeSKNKn7fvp9seROEf5c/OvN1WOZQCvhjp1/CO7cFUFnx8V59HbZTD6Lst
tcO6vGs7nMTKXn1v3rfv0xB6/GRF1z/n246g7Ill1TXft1YeSu6T7eKSx9se
RjFHq8oyDrVSHk6hVfvnveFvewSNMB5F1CxsqUzUcD9q+e7aXzRZEIUeHRhy
doyyFkl+x3Yunb6lhapH0rGEutOnNGVtJK1dNn9bQ0pzVR9Jh+ccnDNhXzNV
H0X1pW91vtFKWYyi2Wv8D7ZIs+dlFIXWtzz9aVpj03wUUTS1+sX2v2p8puZn
NE3bG5ReaTSoejRVvDLS//XIn1R9NB352Of6EvOJqo+mj5pvHPbO3MeqPobW
fzNiKfk9UvUxNLOs+kHm0X+o+ljyD6vvHJZRr+pjyW/7voBBz+tUfRyNDrpT
fMx4oOrj6Nbdz5ZGRNvPz3jafDeiS4/zd1R9PP3h8vTPkt+6peoxVPj9rLjK
hTdUPYYGtLlYEnftmqpPoNFhr6/bFHtF1SdQB7PGd9ExU9VjKShk+SX39Auq
HksZe5f0PPN+tapPpBvPuq9au7pK1SdS/oX7GaVrKlU9jtxndPNWyAlVj6M3
3051fdiwT9Xj1X1QH4qn8I39ll9Zouoinn6T3PGPFYnHmyzjqeUnyUGLNp5W
/Qm0wF0ee+G7s02mBApeOSegy4lzqj+BUktPlT5ffF71J1C+n7vv6j7q99ES
qXDuxZDG3ZdUfyL5xpRE9vvtZdWfSM0epMb/OlBdH5lICUtznA93XFX9SZTV
p7dvYuB11Z9E0Z9vahtZVqv6k6iN59VB751T118mUeO6hUf2d7ip+pPpbO3y
oMOh6n5RMm1JPzdvyrjbqj+ZnNuWhDvHqPsrk6l+458yK4Lvqv5JFFCz85OB
Le+p/kk0dus6v8pTymIS7Z27uK5isJovchKNqnj1yOL59vyZTD7bz7S+dEKZ
JtMHuVUnjz5WFpNpZsH5XX26q/knJ9Pn69vGRUQra1PovfkbfvwxTZmm0MeF
PQ/McNnzdQrFumeM/9Jt908hmhEX3Dnb7p9KK8NqZs1MsPunkituT81LoXb/
VHrj3qHFPi/a/VMp93jV4LIf7O+fQnEXR7U9tN3+/imUlnVtdmWB/f1TaN6M
IZOf+Nu/fwr177O7x51ydX20VJq1LPnTp1fV9aRU2pSUtWiln7JIpYM+fV8Y
Pta+/qn0Zd3WYTOd6v5oabS/14c7vvXY9y+Nakt/H3XZre6vSCP5frNuA1L/
rvrTaPu1buF5Q9V80NJpyfM3J3V5Sc0XSqeyAyt2PKxRz6dIp+qn+w+Xl6v5
JtMpI6qu+ZGJaj5qGdQ9qLyq9RM1XymDunWOawgpV8+vyKCKv64PvZJ7UfVn
kNsTuKHZ4hrVn0n12asaw9aq54MyKX5bYCefzd+q/kxyjewUUGeo51tm0gPP
lrkNPb9W/dPI/beVVz2aeh5pGt1bfa5dUqX9vE+jXeIvvVZ1Pqz6p9H5MYdv
X/bfpvp10n7+cei8Tjrv13X493U+vqHz7yd1/v1Nnf9+Whb//R1Z/PpQFr9+
ehZc3yx+/Y0sfn9kFr9/Zha/v5qT33+Hk88PcvL5ozthfjn5/DOcfH5KJ5+/
ppPPby2bz39HNn8+KJs/P3o2PF/Z/PkzsvnzKbP582tm8+dby+HPvyOHrw+U
w9cPPQfWlxy+/hg5fH2SOXz9MnP4+qbl8vXPkcvXR8rl66eeC+trLl9/jVy+
Pstcvn6buXx91/L4+u/I4+8HyuPvDz0P3i95/P1j5PH3k8zj7y8zj7/ftHz+
/nPk8/cj5fP3p54P79d8/v418vn7Webz97eZz9/vmou0n38cLr4/IBffP+gu
vr8QLr7/MFx8fyJdfP9iumB/U8D3P44Cvj+iAr5/0gv4/koU8P2XUcD3Z7KA
79/MAtjfufn+z+Hm+0Ny8/2j7ub7S+Hm+0/Dzfen0s33r6Yb9reFfP/rKOT7
Yyrk+2e9kO+vRSHffxuFfH8uC/n+3SyE/X0R3/87ing+oCKeH/Qini9EEc8f
RhHPJ7KI5xezCPKNh+cfh4fnI/Lw/KR7eL4SHp6/DA/PZ9LD85vpgXxXzPOf
o5jnQyrm+VEv5vlSFPP8aRTzfCqLeX41iyHflvD86yjh+ZhKeH7WS3i+FiU8
fxslPJ/LEp7fzRKCfA8f/H8BO6fZHx+wL/hl8GvgrmAHOBDcHdwD3BPcGxwE
7gsOBoeA+4MHgAeCB4FDwYPBYeBw8BBwBHgoeBh4OHgEmLgF2Mr/vA628j+v
g638z+tgK//zOtjK/7wOtvI/r4Ot/M/rYCv/8zrYyv+8DrbyP6+DrfzP62Ar
//M62Mr/vA628j+vg638z+tggvwvwBJs5X3eDxZgCbbyPu8HC7AEW3mf94MF
WIKtvM/7wQIswVbe5/1gAZZgK+/zfrAAS7CV93k/WIAl2Mr7vB8swBJs5X3e
DxZgCbbyPu8HC7AEW3mf94MFWIKtvM/7wQIswVbe5/1gAZZgK+/zfrAAS7CV
93k/WIAl2AF5n8A6WIANsASbYCvf8/HBBNbBAmyAJdgEW/mejw8msA4WYAMs
wSbYyvd8fDCBdbAAG2AJNsFWvufjgwmsgwXYAEuwCbbyPR8fTGAdLMAGWIJN
sJXv+fhgAutgATbAEmyCrXzPxwcTWAcLsAGWYBPHg3xPYB0swAZYgk2wlef5
+GAC62ABNsASbIKtPM/HBxNYBwuwAZZgE2zleT4+mMA6WIANsASbYCvP8/HB
BNbBAmyAJdgEW3mejw8msA4WYAMswSbYyvN8fDCBdbAAG2AJNsFWnufjgwms
gwXYAEuwCf6Pz/+a57HPe57Ae57Ae57Ae57Ae56gqd97nsB7nsB7nsB7nsB7
nqBpfO95Au95Au95Au95Au95gqbx/3/PE/wTvy976g==
"], {{{}, {}, {}, {}, {}, {
Hue[0.67, 0.6, 0.6],
Opacity[0.2],
LineBox[{514, 1}],
LineBox[{515, 2}],
LineBox[{516, 3}],
LineBox[{517, 4}]}, {}, {
Hue[0.9060679774997897, 0.6, 0.6],