-
Notifications
You must be signed in to change notification settings - Fork 226
/
SimpleInstancing12.cpp
694 lines (563 loc) · 26.9 KB
/
SimpleInstancing12.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//--------------------------------------------------------------------------------------
// SimpleInstancing12.cpp
//
// Advanced Technology Group (ATG)
// Copyright (C) Microsoft Corporation. All rights reserved.
//--------------------------------------------------------------------------------------
#include "pch.h"
#include "SimpleInstancing12.h"
#include "ATGColors.h"
#include "ControllerFont.h"
#include "ReadData.h"
extern void ExitSample() noexcept;
using namespace DirectX;
using namespace DirectX::PackedVector;
using Microsoft::WRL::ComPtr;
namespace
{
//--------------------------------------------------------------------------------------
// Constants
//--------------------------------------------------------------------------------------
const uint32_t c_maxInstances = 20000;
const uint32_t c_startInstanceCount = 5000;
const uint32_t c_minInstanceCount = 1000;
const float c_boxBounds = 60.0f;
const size_t c_cubeIndexCount = 36;
const float c_velocityMultiplier = 500.0f;
//--------------------------------------------------------------------------------------
// Cube vertex definition
//--------------------------------------------------------------------------------------
struct Vertex
{
XMFLOAT3 pos;
XMFLOAT3 norm;
};
}
Sample::Sample() :
m_frame(0),
m_mappedInstanceData(nullptr),
m_instanceDataGpuAddr(0),
m_usedInstanceCount(c_startInstanceCount),
m_lights{},
m_pitch(0.0f),
m_yaw(0.0f)
{
XMStoreFloat4x4(&m_proj, XMMatrixIdentity());
// Use gamma-correct rendering.
m_deviceResources = std::make_unique<DX::DeviceResources>(DXGI_FORMAT_B8G8R8A8_UNORM_SRGB, DXGI_FORMAT_D32_FLOAT, 2,
DX::DeviceResources::c_Enable4K_UHD);
}
// Initialize the Direct3D resources required to run.
void Sample::Initialize(IUnknown* window)
{
m_gamePad = std::make_unique<GamePad>();
m_deviceResources->SetWindow(window);
m_deviceResources->CreateDeviceResources();
CreateDeviceDependentResources();
m_deviceResources->CreateWindowSizeDependentResources();
CreateWindowSizeDependentResources();
m_fenceEvent.Attach(CreateEvent(nullptr, FALSE, FALSE, nullptr));
if (!m_fenceEvent.IsValid())
{
throw std::exception("CreateEvent");
}
}
#pragma region Frame Update
// Executes basic render loop.
void Sample::Tick()
{
PIXBeginEvent(PIX_COLOR_DEFAULT, L"Frame %llu", m_frame);
m_timer.Tick([&]()
{
Update(m_timer);
});
Render();
PIXEndEvent();
m_frame++;
}
// Updates the world.
void Sample::Update(DX::StepTimer const& timer)
{
PIXBeginEvent(PIX_COLOR_DEFAULT, L"Update");
float elapsedTime = float(timer.GetElapsedSeconds());
auto pad = m_gamePad->GetState(0);
if (pad.IsConnected())
{
m_gamePadButtons.Update(pad);
if (pad.IsViewPressed())
{
ExitSample();
}
if (m_gamePadButtons.a == GamePad::ButtonStateTracker::ButtonState::PRESSED)
{
ResetSimulation();
}
if (m_gamePadButtons.rightShoulder == GamePad::ButtonStateTracker::ButtonState::PRESSED)
{
m_usedInstanceCount = std::min(c_maxInstances, m_usedInstanceCount + 1000);
}
else if (m_gamePadButtons.leftShoulder == GamePad::ButtonStateTracker::ButtonState::PRESSED)
{
m_usedInstanceCount = std::max(c_minInstanceCount, m_usedInstanceCount - 1000);
}
if (pad.IsLeftStickPressed())
{
m_yaw = m_pitch = 0.f;
}
else
{
m_yaw += pad.thumbSticks.leftX * 0.1f;
m_pitch += pad.thumbSticks.leftY * 0.1f;
}
}
else
{
m_gamePadButtons.Reset();
}
// Limit to avoid looking directly up or down
const float limit = XM_PI / 2.0f - 0.01f;
m_pitch = std::max(-limit, std::min(+limit, m_pitch));
if (m_yaw > XM_PI)
{
m_yaw -= XM_PI * 2.f;
}
else if (m_yaw < -XM_PI)
{
m_yaw += XM_PI * 2.f;
}
XMVECTOR lookAt = XMVectorSet(
sinf(m_yaw),
m_pitch,
cosf(m_yaw),
0);
// Update transforms.
XMMATRIX camera = XMMatrixLookAtLH(g_XMZero, lookAt, g_XMIdentityR1);
XMMATRIX proj = XMLoadFloat4x4(&m_proj);
XMMATRIX clip = XMMatrixTranspose(XMMatrixMultiply(camera, proj));
XMStoreFloat4x4( &m_clip, clip);
// Update instance data for the next frame.
for (size_t i = 1; i < m_usedInstanceCount; ++i)
{
// Update positions...
float velocityMultiplier = i <= c_pointLightCount ? 5.0f * c_velocityMultiplier : c_velocityMultiplier;
XMVECTOR position = XMLoadFloat4(&m_CPUInstanceData[i].positionAndScale);
position += m_velocities[i] * elapsedTime * velocityMultiplier;
XMStoreFloat4(&m_CPUInstanceData[i].positionAndScale, position);
float X = m_CPUInstanceData[i].positionAndScale.x;
float Y = m_CPUInstanceData[i].positionAndScale.y;
float Z = m_CPUInstanceData[i].positionAndScale.z;
bool bounce = false;
// If an instance pops out of bounds in any dimension, reverse velocity in that dimension...
if (X < -c_boxBounds || X > c_boxBounds)
{
m_velocities[i] *= XMVectorSet(-1.0f, 1.0f, 1.0f, 1.0f);
bounce = true;
}
if (Y < -c_boxBounds || Y > c_boxBounds)
{
m_velocities[i] *= XMVectorSet(1.0f, -1.0f, 1.0f, 1.0f);
bounce = true;
}
if (Z < -c_boxBounds || Z > c_boxBounds)
{
m_velocities[i] *= XMVectorSet(1.0f, 1.0f, -1.0f, 1.0f);
bounce = true;
}
// Apply bounce here.
if (bounce)
{
position = XMLoadFloat4(&m_CPUInstanceData[i].positionAndScale);
position += m_velocities[i] * elapsedTime * c_velocityMultiplier;
XMStoreFloat4(&m_CPUInstanceData[i].positionAndScale, position);
}
// Set up point light info.
if (i <= c_pointLightCount)
{
m_lights.pointPositions[i - 1] = m_CPUInstanceData[i].positionAndScale;
}
XMVECTOR q = XMLoadFloat4(&m_CPUInstanceData[i].quaternion);
q = XMQuaternionNormalizeEst(XMQuaternionMultiply(m_rotationQuaternions[i], q));
XMStoreFloat4(&m_CPUInstanceData[i].quaternion, q);
}
PIXEndEvent();
}
#pragma endregion
#pragma region Frame Render
// Draws the scene.
void Sample::Render()
{
// Don't try to render anything before the first Update.
if (m_timer.GetFrameCount() == 0)
{
return;
}
// Check to see if the GPU is keeping up
int frameIdx = m_deviceResources->GetCurrentFrameIndex();
int numBackBuffers = m_deviceResources->GetBackBufferCount();
uint64_t completedValue = m_fence->GetCompletedValue();
if ((frameIdx > completedValue) // if frame index is reset to zero it may temporarily be smaller than the last GPU signal
&& (frameIdx - completedValue > numBackBuffers))
{
// GPU not caught up, wait for at least one available frame
DX::ThrowIfFailed(m_fence->SetEventOnCompletion(frameIdx - numBackBuffers, m_fenceEvent.Get()));
WaitForSingleObjectEx(m_fenceEvent.Get(), INFINITE, FALSE);
}
// Prepare the command list to render a new frame.
m_deviceResources->Prepare();
Clear();
auto commandList = m_deviceResources->GetCommandList();
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Render");
commandList->SetGraphicsRootSignature(m_rootSignature.Get());
commandList->SetPipelineState(m_pipelineState.Get());
// We use the DirectX Tool Kit helper for managing constants memory
// (see SimpleLighting12 for how to provide constants without this helper)
auto vertexConstants = m_graphicsMemory->AllocateConstant<XMFLOAT4X4>(m_clip);
auto pixelConstants = m_graphicsMemory->AllocateConstant<Lights>(m_lights);
commandList->SetGraphicsRootConstantBufferView(0, vertexConstants.GpuAddress());
commandList->SetGraphicsRootConstantBufferView(1, pixelConstants.GpuAddress());
// Set necessary state.
commandList->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
// Provide per-frame instance data
int instanceIdx = (frameIdx % numBackBuffers);
int frameOffset = (c_maxInstances * sizeof(Instance)) * instanceIdx;
memcpy(m_mappedInstanceData + frameOffset, m_CPUInstanceData.get(), sizeof(Instance) * m_usedInstanceCount);
m_vertexBufferView[1].BufferLocation = m_instanceDataGpuAddr + frameOffset;
m_vertexBufferView[1].StrideInBytes = sizeof(Instance);
m_vertexBufferView[1].SizeInBytes = sizeof(Instance) * m_usedInstanceCount;
// Set up the vertex buffers. We have 3 streams:
// Stream 1 contains per-primitive vertices defining the cubes.
// Stream 2 contains the per-instance data for scale, position and orientation
// Stream 3 contains the per-instance data for color.
commandList->IASetVertexBuffers(0, _countof(m_vertexBufferView), m_vertexBufferView);
// The per-instance data is referenced by index...
commandList->IASetIndexBuffer(&m_indexBufferView);
// Draw the entire scene...
commandList->DrawIndexedInstanced(c_cubeIndexCount, m_usedInstanceCount, 0, 0, 0);
// Draw UI.
ID3D12DescriptorHeap* heaps[] = { m_resourceDescriptors->Heap() };
commandList->SetDescriptorHeaps(_countof(heaps), heaps);
auto size = m_deviceResources->GetOutputSize();
auto safe = SimpleMath::Viewport::ComputeTitleSafeArea(size.right, size.bottom);
m_batch->Begin(commandList);
wchar_t str[32] = {};
swprintf_s(str, L"Instancing count: %u", m_usedInstanceCount);
m_smallFont->DrawString(m_batch.get(), str, XMFLOAT2(float(safe.left), float(safe.top)), ATG::Colors::White);
DX::DrawControllerString(m_batch.get(),
m_smallFont.get(), m_ctrlFont.get(),
L"[LThumb] Rotate [A] Reset [LB]/[RB] Change instance count [View] Exit",
XMFLOAT2(float(safe.left),
float(safe.bottom) - m_smallFont->GetLineSpacing()),
ATG::Colors::LightGrey);
m_batch->End();
PIXEndEvent(commandList);
// Show the new frame.
PIXBeginEvent(PIX_COLOR_DEFAULT, L"Present");
m_deviceResources->Present();
m_graphicsMemory->Commit(m_deviceResources->GetCommandQueue());
// GPU will signal an increasing value each frame
m_deviceResources->GetCommandQueue()->Signal(m_fence.Get(), frameIdx);
PIXEndEvent();
}
// Helper method to clear the back buffers.
void Sample::Clear()
{
auto commandList = m_deviceResources->GetCommandList();
PIXBeginEvent(commandList, PIX_COLOR_DEFAULT, L"Clear");
// Clear the views.
auto rtvDescriptor = m_deviceResources->GetRenderTargetView();
auto dsvDescriptor = m_deviceResources->GetDepthStencilView();
commandList->OMSetRenderTargets(1, &rtvDescriptor, FALSE, &dsvDescriptor);
// Use linear clear color for gamma-correct rendering.
commandList->ClearRenderTargetView(rtvDescriptor, ATG::ColorsLinear::Background, 0, nullptr);
commandList->ClearDepthStencilView(dsvDescriptor, D3D12_CLEAR_FLAG_DEPTH, 1.0f, 0, 0, nullptr);
// Set the viewport and scissor rect.
auto viewport = m_deviceResources->GetScreenViewport();
auto scissorRect = m_deviceResources->GetScissorRect();
commandList->RSSetViewports(1, &viewport);
commandList->RSSetScissorRects(1, &scissorRect);
PIXEndEvent(commandList);
}
#pragma endregion
#pragma region Message Handlers
// Message handlers
void Sample::OnSuspending()
{
auto queue = m_deviceResources->GetCommandQueue();
queue->SuspendX(0);
}
void Sample::OnResuming()
{
auto queue = m_deviceResources->GetCommandQueue();
queue->ResumeX();
m_timer.ResetElapsedTime();
m_gamePadButtons.Reset();
}
#pragma endregion
#pragma region Direct3D Resources
// These are the resources that depend on the device.
void Sample::CreateDeviceDependentResources()
{
auto device = m_deviceResources->GetD3DDevice();
m_graphicsMemory = std::make_unique<GraphicsMemory>(device);
m_resourceDescriptors = std::make_unique<DescriptorHeap>(device, Descriptors::Count);
ResourceUploadBatch resourceUpload(device);
resourceUpload.Begin();
{
RenderTargetState rtState(m_deviceResources->GetBackBufferFormat(), m_deviceResources->GetDepthBufferFormat());
SpriteBatchPipelineStateDescription pd(rtState);
m_batch = std::make_unique<SpriteBatch>(device, resourceUpload, pd);
}
// Create a root signature.
auto vertexShaderBlob = DX::ReadData(L"VertexShader.cso");
// Xbox One best practice is to use HLSL-based root signatures to support shader precompilation.
DX::ThrowIfFailed(
device->CreateRootSignature(0, vertexShaderBlob.data(), vertexShaderBlob.size(),
IID_GRAPHICS_PPV_ARGS(m_rootSignature.ReleaseAndGetAddressOf())));
// Create the pipeline state, which includes loading shaders.
auto pixelShaderBlob = DX::ReadData(L"PixelShader.cso");
static const D3D12_INPUT_ELEMENT_DESC s_inputElementDesc[] =
{
// SemanticName SemanticIndex Format InputSlot AlignedByteOffset InputSlotClass InstanceDataStepRate
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }, // Vertex local position
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }, // Vertex normal
{ "I_ROTATION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, 0, D3D12_INPUT_CLASSIFICATION_PER_INSTANCE_DATA, 1 }, // Instance rotation quaternion
{ "I_POSSCALE", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 1, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_INSTANCE_DATA, 1 }, // Instance position and scale (scale in "w")
{ "I_COLOR", 0, DXGI_FORMAT_R8G8B8A8_UNORM, 2, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_INSTANCE_DATA, 1 }, // Instance color
};
// Describe and create the graphics pipeline state object (PSO).
D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
psoDesc.InputLayout = { s_inputElementDesc, _countof(s_inputElementDesc) };
psoDesc.pRootSignature = m_rootSignature.Get();
psoDesc.VS = { vertexShaderBlob.data(), vertexShaderBlob.size() };
psoDesc.PS = { pixelShaderBlob.data(), pixelShaderBlob.size() };
psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
psoDesc.DepthStencilState.DepthEnable = FALSE;
psoDesc.DepthStencilState.StencilEnable = FALSE;
psoDesc.DSVFormat = m_deviceResources->GetDepthBufferFormat();
psoDesc.SampleMask = UINT_MAX;
psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
psoDesc.NumRenderTargets = 1;
psoDesc.RTVFormats[0] = m_deviceResources->GetBackBufferFormat();
psoDesc.SampleDesc.Count = 1;
DX::ThrowIfFailed(
device->CreateGraphicsPipelineState(&psoDesc,
IID_GRAPHICS_PPV_ARGS(m_pipelineState.ReleaseAndGetAddressOf())));
CD3DX12_HEAP_PROPERTIES heapUpload(D3D12_HEAP_TYPE_UPLOAD);
// Create and initialize the vertex buffer defining a cube.
{
static const Vertex s_vertexData[] =
{
{ XMFLOAT3(-1, -1, -1), XMFLOAT3(0, 0, -1) },
{ XMFLOAT3( 1, -1, -1), XMFLOAT3(0, 0, -1) },
{ XMFLOAT3( 1, 1, -1), XMFLOAT3(0, 0, -1) },
{ XMFLOAT3(-1, 1, -1), XMFLOAT3(0, 0, -1) }, // Z negative face
{ XMFLOAT3( 1, -1, 1), XMFLOAT3(0, 0, 1) },
{ XMFLOAT3(-1, -1, 1), XMFLOAT3(0, 0, 1) },
{ XMFLOAT3(-1, 1, 1), XMFLOAT3(0, 0, 1) },
{ XMFLOAT3( 1, 1, 1), XMFLOAT3(0, 0, 1) }, // Z Positive face
{ XMFLOAT3(-1, -1, -1), XMFLOAT3(-1, 0, 0) },
{ XMFLOAT3(-1, 1, -1), XMFLOAT3(-1, 0, 0) },
{ XMFLOAT3(-1, 1, 1), XMFLOAT3(-1, 0, 0) },
{ XMFLOAT3(-1, -1, 1), XMFLOAT3(-1, 0, 0) }, // X negative face
{ XMFLOAT3( 1, 1, -1), XMFLOAT3( 1, 0, 0) },
{ XMFLOAT3( 1, -1, -1), XMFLOAT3( 1, 0, 0) },
{ XMFLOAT3( 1, -1, 1), XMFLOAT3( 1, 0, 0) },
{ XMFLOAT3( 1, 1, 1), XMFLOAT3( 1, 0, 0) }, // X Positive face
{ XMFLOAT3(-1, -1, 1), XMFLOAT3(0, -1, 0) },
{ XMFLOAT3( 1, -1, 1), XMFLOAT3(0, -1, 0) },
{ XMFLOAT3( 1, -1, -1), XMFLOAT3(0, -1, 0) },
{ XMFLOAT3(-1, -1, -1), XMFLOAT3(0, -1, 0) }, // Y negative face
{ XMFLOAT3( 1, 1, 1), XMFLOAT3(0, 1, 0) },
{ XMFLOAT3(-1, 1, 1), XMFLOAT3(0, 1, 0) },
{ XMFLOAT3(-1, 1, -1), XMFLOAT3(0, 1, 0) },
{ XMFLOAT3( 1, 1, -1), XMFLOAT3(0, 1, 0) }, // Y Positive face
};
// Note: using upload heaps to transfer static data like vert buffers is not
// recommended. Every time the GPU needs it, the upload heap will be marshalled
// over. Please read up on Default Heap usage. An upload heap is used here for
// code simplicity and because there are very few verts to actually transfer.
auto resDesc = CD3DX12_RESOURCE_DESC::Buffer(sizeof(s_vertexData));
DX::ThrowIfFailed(
device->CreateCommittedResource(&heapUpload,
D3D12_HEAP_FLAG_NONE,
&resDesc,
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_GRAPHICS_PPV_ARGS(m_vertexBuffer.ReleaseAndGetAddressOf())));
// Copy the triangle data to the vertex buffer.
UINT8* pVertexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
DX::ThrowIfFailed(
m_vertexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
memcpy(pVertexDataBegin, s_vertexData, sizeof(s_vertexData));
m_vertexBuffer->Unmap(0, nullptr);
// Initialize the vertex buffer view.
m_vertexBufferView[0].BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
m_vertexBufferView[0].StrideInBytes = sizeof(Vertex);
m_vertexBufferView[0].SizeInBytes = sizeof(s_vertexData);
}
// Create vertex buffer memory for per-instance data.
{
const D3D12_HEAP_PROPERTIES uploadHeapProperties = CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD);
size_t cbSize = c_maxInstances * m_deviceResources->GetBackBufferCount() * sizeof(Instance);
const D3D12_RESOURCE_DESC instanceBufferDesc = CD3DX12_RESOURCE_DESC::Buffer(cbSize);
DX::ThrowIfFailed(device->CreateCommittedResource(
&uploadHeapProperties,
D3D12_HEAP_FLAG_NONE,
&instanceBufferDesc,
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_GRAPHICS_PPV_ARGS(m_instanceData.ReleaseAndGetAddressOf())));
DX::ThrowIfFailed(m_instanceData->Map(0, nullptr, reinterpret_cast< void** >(&m_mappedInstanceData)));
m_instanceDataGpuAddr = m_instanceData->GetGPUVirtualAddress();
}
// Create a static vertex buffer with color data.
{
static const XMVECTORF32 s_bigCubeColor = { 1.f, 1.f, 1.f, 0.f };
uint32_t colors[c_maxInstances];
colors[0] = XMCOLOR(s_bigCubeColor);
for (uint32_t i = 1; i < c_maxInstances; ++i)
{
if (i <= c_pointLightCount)
{
m_lights.pointColors[i - 1] = XMFLOAT4(FloatRand(0.25f, 1.0f), FloatRand(0.25f, 1.0f), FloatRand(0.25f, 1.0f), 1.0f);
colors[i] = XMCOLOR(m_lights.pointColors[i - 1].x, m_lights.pointColors[i - 1].y, m_lights.pointColors[i - 1].z, 1.f);
}
else
{
colors[i] = XMCOLOR(FloatRand(0.25f, 1.0f), FloatRand(0.25f, 1.0f), FloatRand(0.25f, 1.0f), 0.f);
}
}
auto resDesc = CD3DX12_RESOURCE_DESC::Buffer(sizeof(uint32_t) * c_maxInstances);
DX::ThrowIfFailed(
device->CreateCommittedResource(&heapUpload,
D3D12_HEAP_FLAG_NONE,
&resDesc,
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_GRAPHICS_PPV_ARGS(m_boxColors.ReleaseAndGetAddressOf())));
// Copy the color data to the vertex buffer.
UINT8* pVertexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
DX::ThrowIfFailed(
m_boxColors->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
memcpy(pVertexDataBegin, colors, sizeof(uint32_t) * c_maxInstances);
m_boxColors->Unmap(0, nullptr);
// Initialize the vertex buffer view.
m_vertexBufferView[2].BufferLocation = m_boxColors->GetGPUVirtualAddress();
m_vertexBufferView[2].StrideInBytes = sizeof(uint32_t);
m_vertexBufferView[2].SizeInBytes = sizeof(uint32_t) * c_maxInstances;
}
// Create and initialize the index buffer for the cube geometry.
{
static const uint16_t s_indexData[] =
{
0, 2, 1,
0, 3, 2,
4, 6, 5,
4, 7, 6,
8, 10, 9,
8, 11, 10,
12, 14, 13,
12, 15, 14,
16, 18, 17,
16, 19, 18,
20, 22, 21,
20, 23, 22,
};
auto resDesc = CD3DX12_RESOURCE_DESC::Buffer(sizeof(s_indexData));
// See note above
DX::ThrowIfFailed(
device->CreateCommittedResource(&heapUpload,
D3D12_HEAP_FLAG_NONE,
&resDesc,
D3D12_RESOURCE_STATE_GENERIC_READ,
nullptr,
IID_GRAPHICS_PPV_ARGS(m_indexBuffer.ReleaseAndGetAddressOf())));
// Copy the data to the index buffer.
uint8_t* pVertexDataBegin;
CD3DX12_RANGE readRange(0, 0); // We do not intend to read from this resource on the CPU.
DX::ThrowIfFailed(
m_indexBuffer->Map(0, &readRange, reinterpret_cast<void**>(&pVertexDataBegin)));
memcpy(pVertexDataBegin, s_indexData, sizeof(s_indexData));
m_indexBuffer->Unmap(0, nullptr);
// Initialize the index buffer view.
m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
m_indexBufferView.Format = DXGI_FORMAT_R16_UINT;
m_indexBufferView.SizeInBytes = sizeof(s_indexData);
}
m_CPUInstanceData.reset(new Instance[c_maxInstances]);
m_rotationQuaternions.reset(reinterpret_cast<XMVECTOR*>(_aligned_malloc(sizeof(XMVECTOR) * c_maxInstances, 16)));
m_velocities.reset(reinterpret_cast<XMVECTOR*>(_aligned_malloc(sizeof(XMVECTOR) * c_maxInstances, 16)));
// Set up the position and scale for the container box. Scale is negative to turn the box inside-out
// (this effectively reverses the normals and backface culling).
// Scale the outside box to slightly larger than our scene boundary, so bouncing boxes never actually clip it.
m_CPUInstanceData[0].positionAndScale = XMFLOAT4(0.0f, 0.0f, 0.0f, -(c_boxBounds + 5));
m_CPUInstanceData[0].quaternion = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
// Initialize the directional light.
XMStoreFloat4(&m_lights.directional, XMVector3Normalize(XMVectorSet(1.0f, 4.0f, -2.0f, 0)));
// Initialize the positions/state of all the cubes in the scene.
ResetSimulation();
// Wait until assets have been uploaded to the GPU.
auto uploadResourcesFinished = resourceUpload.End(m_deviceResources->GetCommandQueue());
uploadResourcesFinished.wait();
// Create a fence for synchronizing between the CPU and the GPU
DX::ThrowIfFailed(device->CreateFence(m_deviceResources->GetCurrentFrameIndex(), D3D12_FENCE_FLAG_NONE,
IID_GRAPHICS_PPV_ARGS(m_fence.ReleaseAndGetAddressOf())));
// Start off the fence with the current frame index
uint64_t currentIdx = m_deviceResources->GetCurrentFrameIndex();
m_deviceResources->GetCommandQueue()->Signal(m_fence.Get(), currentIdx);
}
// Allocate all memory resources that change on a window SizeChanged event.
void Sample::CreateWindowSizeDependentResources()
{
// Initialize the projection matrix.
auto size = m_deviceResources->GetOutputSize();
auto device = m_deviceResources->GetD3DDevice();
ResourceUploadBatch resourceUpload(device);
resourceUpload.Begin();
m_smallFont = std::make_unique<SpriteFont>(device, resourceUpload,
(size.bottom > 1080) ? L"SegoeUI_36.spritefont" : L"SegoeUI_18.spritefont",
m_resourceDescriptors->GetCpuHandle(Descriptors::TextFont),
m_resourceDescriptors->GetGpuHandle(Descriptors::TextFont));
m_ctrlFont = std::make_unique<SpriteFont>(device, resourceUpload,
(size.bottom > 1080) ? L"XboxOneControllerLegend.spritefont" : L"XboxOneControllerLegendSmall.spritefont",
m_resourceDescriptors->GetCpuHandle(Descriptors::ControllerFont),
m_resourceDescriptors->GetGpuHandle(Descriptors::ControllerFont));
// Wait until assets have been uploaded to the GPU.
auto uploadResourcesFinished = resourceUpload.End(m_deviceResources->GetCommandQueue());
uploadResourcesFinished.wait();
XMMATRIX proj = XMMatrixPerspectiveFovLH(XM_PIDIV4, float(size.right) / float(size.bottom), 0.1f, 500.0f);
XMStoreFloat4x4(&m_proj, proj);
// Set the viewport for our SpriteBatch.
m_batch->SetViewport(m_deviceResources->GetScreenViewport());
}
#pragma endregion
void Sample::ResetSimulation()
{
// Reset positions to starting point, and orientations to identity.
// Note that instance 0 is the scene bounding box, and the position, orientation and scale are static (i.e. never update).
for (size_t i = 1; i < c_maxInstances; ++i)
{
m_CPUInstanceData[i].positionAndScale = XMFLOAT4(0.0f, 0.0f, c_boxBounds / 2.0f, FloatRand(0.1f, 0.4f));
m_CPUInstanceData[i].quaternion = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f);
// For the first c_pointLightCount in the updated array, we scale up by a small factor so they stand out.
if (i <= c_pointLightCount)
{
m_CPUInstanceData[i].positionAndScale.w = 1.53f;
m_lights.pointPositions[i - 1] = m_CPUInstanceData[i].positionAndScale;
}
// Apply a random spin to each instance.
m_rotationQuaternions[i] = XMQuaternionRotationAxis(XMVector3Normalize(XMVectorSet(FloatRand(), FloatRand(), FloatRand(), 0)), FloatRand(0.001f, 0.1f));
// ...and a random velocity.
m_velocities[i] = XMVectorSet(FloatRand(-0.01f, 0.01f), FloatRand(-0.01f, 0.01f), FloatRand(-0.01f, 0.01f), 0);
}
}
inline float Sample::FloatRand(float lowerBound, float upperBound)
{
if (lowerBound == upperBound)
return lowerBound;
std::uniform_real_distribution<float> dist(lowerBound, upperBound);
return dist(m_randomEngine);
}