-
Notifications
You must be signed in to change notification settings - Fork 457
/
Copy patheval_nsp.py
114 lines (84 loc) · 3.16 KB
/
eval_nsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
from fairseq.models.roberta import RobertaModel
import numpy as np
import torch
import torch.nn.functional as F
import sys
batch_size = 16
n_samples = None
print('loading model and data')
roberta = RobertaModel.from_pretrained(
'.',
checkpoint_file=sys.argv[1],
data_name_or_path=sys.argv[2],
user_dir='musicbert'
)
num_classes = 2
group_size = 50
roberta.task.load_dataset('valid')
dataset = roberta.task.datasets['valid']
label_dict = roberta.task.label_dictionary
pad_index = label_dict.pad()
def label_fn(label): return label_dict.string(
[label + label_dict.nspecial]
)
roberta.cuda()
roberta.eval()
cnt = 0
y_true = []
y_pred = []
def padded(seq, max_length):
pad_length = max_length - seq.shape[0]
assert pad_length >= 0
return np.concatenate((seq, np.full((pad_length,), pad_index, dtype=seq.dtype)))
assert len(dataset) % group_size == 0
for i in range(0, len(dataset), batch_size):
if n_samples and i == group_size * n_samples:
break
target = np.vstack(tuple(dataset[j]['target'].numpy()
for j in range(i, i + batch_size) if j < len(dataset)))
target = torch.from_numpy(target)
target = F.one_hot(target.long(), num_classes=num_classes)
target = target.sum(dim=1)
source_batch_max_length = max(dataset[j]['net_input.src_tokens'].size(
0) for j in range(i, i + batch_size) if j < len(dataset))
source = np.vstack(tuple(padded(dataset[j]['net_input.src_tokens'].numpy(
), source_batch_max_length) for j in range(i, i + batch_size) if j < len(dataset)))
source = torch.from_numpy(source)
output = F.softmax(roberta.predict(
'acc_head' if 'acc' in sys.argv[1] else 'next_head', source, True), dim=1)
y_true.append(target.detach().cpu().numpy())
y_pred.append(output.detach().cpu().numpy())
print('evaluating: {:.4f}%'.format(
i / len(dataset) * 100), end='\r', flush=True)
y_true = np.vstack(y_true)
y_pred = np.vstack(y_pred)
print()
for i in range(num_classes):
print('label[{}] ='.format(i), label_fn(i))
print('y_true.shape =', y_true.shape)
print('y_pred.shape =', y_pred.shape)
query_list = []
assert y_pred.shape[0] % group_size == 0
assert {label_fn(0), label_fn(1)} == {'0', '1'}
for i in range(0, y_pred.shape[0], group_size):
x = 1 if int(label_fn(1)) == 1 else 0 # find which label is "true"
q = tuple((-y_pred[j][x], y_true[j][x]) for j in range(i, i + group_size))
q = tuple(j[1] for j in sorted(q))
query_list.append(q)
def AP(q):
rk_list = []
for i, j in enumerate(q):
if j == 1:
rk_list.append(i + 1)
# print(rk_list)
result = sum((i + 1) / j for i, j in enumerate(rk_list)) / len(rk_list)
return result
print('MAP: {:.6f}'.format(sum(AP(q) for q in query_list) / len(query_list)))
for z in [1, 5, 10, 15, 20, 25]:
print('HITS@{}: {:.6f}'.format(z,
sum(sum(q[:z]) / sum(q) for q in query_list) / len(query_list)))
with open(sys.argv[1].split('/')[-1].split('.')[0] + '.npy', 'wb') as f:
np.save(f, {'y_true': y_true, 'y_pred': y_pred})