-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy path03_querying.py
51 lines (44 loc) · 1.79 KB
/
03_querying.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import mlflow
from azureml.pipeline import initialise_mlflow_client
from rag_experiment_accelerator.checkpoint import init_checkpoint
from rag_experiment_accelerator.config.config import Config
from rag_experiment_accelerator.config.environment import Environment
from rag_experiment_accelerator.config.paths import mlflow_run_name
from rag_experiment_accelerator.run.querying import run
from rag_experiment_accelerator.data_assets.data_asset import create_data_asset
from rag_experiment_accelerator.artifact.handlers.query_output_handler import (
QueryOutputHandler,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config_path", type=str, help="input: path to the config file"
)
parser.add_argument(
"--data_dir",
type=str,
help="input: path to the input data",
default=None, # default is initialized in Config
)
args, _ = parser.parse_known_args()
environment = Environment.from_env_or_keyvault()
config = Config.from_path(
environment,
args.config_path,
)
mlflow_client = initialise_mlflow_client(environment, config)
mlflow.set_experiment(config.experiment_name)
handler = QueryOutputHandler(config.path.query_data_dir)
init_checkpoint(config)
for index_config in config.index.flatten():
with mlflow.start_run(run_name=mlflow_run_name(config.job_name)):
run(environment, config, index_config, mlflow_client)
index_name = index_config.index_name()
create_data_asset(
data_path=handler.get_output_path(
index_name, config.experiment_name, config.job_name
),
data_asset_name=index_name,
environment=environment,
)