-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdataloader.py
executable file
·38 lines (32 loc) · 1.32 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from torch.utils.data import Dataset
import numpy as np
from utils import get_timestamp
class SuicidalDataset(Dataset):
def __init__(self, label, tweet, temporal, timestamp, current=True, random=False):
super().__init__()
self.label = label
self.tweet = tweet
self.temporal = temporal
self.current = current
self.timestamp = timestamp
self.random = random
def __len__(self):
return len(self.label)
def __getitem__(self, item):
labels = torch.tensor(self.label[item])
tweet_features = self.tweet[item]
if self.current:
result = self.temporal[item]
if self.random:
np.random.shuffle(result)
temporal_tweet_features = torch.tensor(result)
timestamp = torch.tensor(get_timestamp(self.timestamp[item]))
else:
if len(self.temporal[item]) == 1:
temporal_tweet_features = torch.zeros((1, 768), dtype=torch.float32)
timestamp = torch.zeros((1, 1), dtype=torch.float32)
else:
temporal_tweet_features = torch.tensor(self.temporal[item][1:])
timestamp = torch.tensor(get_timestamp(self.timestamp[item][1:]))
return [labels, tweet_features, temporal_tweet_features, timestamp]