-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecutor_color_mnist.py
461 lines (363 loc) · 19.4 KB
/
executor_color_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from abstract_executor import AbstractExecutor
from client import FederatedClient
from fed_logger import FedLogger
from trainer import Trainer
from evaluator import Evaluator
from evaluator_helper import *
from data_loader import *
from model import *
from helper import *
from sklearn.metrics import roc_curve
from torchvision import datasets
import numpy as np
import os
import matplotlib.pyplot as plt
class ColorMNISTExecutor(AbstractExecutor):
COLOR_MNIST_DATASET = "color_mnist"
"""Initialize"""
def __init__(self):
self.data_loader = DataLoaderFactory.get_data_loader(
DataLoaderType.COLOR_MNIST)
self.evaluator_helper = EvaluatorHelperFactory.get_evaluator(
EvaluatorHelperType.BINARY)
self.trainer = Trainer(self.evaluator_helper)
self.evaluator = Evaluator(self.evaluator_helper)
def is_eligible_executor(self, dataset):
return dataset == self.COLOR_MNIST_DATASET
def run(self, restart, flags):
algorithm = flags.algorithm
log_dir = "mnist-{}-restart {}".format(algorithm, restart + 1)
os.mkdir(log_dir)
self.logger = FedLogger.getLogger(restart + 1,
"{}/mnist-{}-restart {}".format(log_dir, algorithm, restart + 1))
self.trainer.set_logger(self.logger)
learning_rate = flags.learning_rate
weight_decay = flags.weight_decay
# learning_rate_decay_step_size = 100
# learning_rate_decay = 0.98
train_batch_size = flags.train_batch_size
test_batch_size = flags.test_batch_size
num_rounds = flags.num_rounds
penalty_anneal_iters = flags.penalty_anneal_iters
penalty_weight_factor = flags.penalty_weight_factor
penalty_weight = flags.penalty_weight
train_envs, test_envs, ood_validation = self.__load_dataset()
clients = self.__create_clients(
train_envs, test_envs, train_batch_size, test_batch_size, learning_rate)
global_model = MnistMLP(390)
if torch.cuda.is_available():
global_model = global_model.to('cuda')
global_optimizer = torch.optim.Adam(global_model.parameters(),
lr=learning_rate,
weight_decay=weight_decay)
final_train_loss_history = []
final_train_acc_history = []
final_test_loss_history = []
final_test_acc_history = []
final_ood_loss_history = []
final_ood_acc_history = []
final_ood_roc_history = []
best_model = None
best_round = 0
best_loss = float("inf")
best_acc = 0
best_pr_auc = 0
best_roc_auc = 0
for round_idx in range(num_rounds):
self.logger.log('\n')
self.logger.log('########################################')
self.logger.log('Start training round: {}'.format(round_idx + 1))
self.logger.log('########################################')
self.logger.log('\n')
""" 1. Load global params """
global_params = global_model.state_dict()
""" 2. Federated training """
train_loss_history, train_acc_history = [], []
test_loss_history, test_acc_history = [], []
model_grads_history, grads_variance_history = [], []
for client in clients:
train_history, test_history, grad_variance, model_grads = client.train(
global_model, global_optimizer, round_idx, nn.BCEWithLogitsLoss(reduction='sum'), flags)
train_loss, train_acc = train_history
test_loss, test_acc, _, _ = test_history
train_loss_history.append(train_loss)
train_acc_history.append(train_acc)
test_loss_history.append(test_loss)
test_acc_history.append(test_acc)
grads_variance_history.append(grad_variance)
model_grads_history.append(model_grads)
final_train_loss = torch.stack(train_loss_history).mean()
final_train_acc = sum(train_acc_history) / len(train_acc_history)
final_test_loss = torch.stack(test_loss_history).mean()
final_test_acc = sum(test_acc_history) / len(test_acc_history)
final_train_loss_np = final_train_loss.detach().cpu().numpy().copy()
final_train_acc_np = final_train_acc.detach().cpu().numpy().copy()
final_test_loss_np = final_test_loss.detach().cpu().numpy().copy()
final_test_acc_np = final_test_acc.detach().cpu().numpy().copy()
final_train_loss_history.append(final_train_loss_np)
final_train_acc_history.append(final_train_acc_np)
final_test_loss_history.append(final_test_loss_np)
final_test_acc_history.append(final_test_acc_np)
""" 3. Arithmetic mean / geometric mean """
if "arith" in algorithm.split("_") and "fishr" not in algorithm.split("_"):
global_optimizer.zero_grad()
compute_arith_mean(
list(global_model.parameters()), model_grads_history)
global_optimizer.step()
self.logger.log("Debug: Arith mean learning rate:")
for param_group in global_optimizer.param_groups:
self.logger.log(param_group['lr'])
if "geo" in algorithm.split("_") and "fishr" not in algorithm.split("_"):
global_optimizer.zero_grad()
compute_geo_mean(list(global_model.parameters()),
model_grads_history, algorithm, 0.001, flags)
global_optimizer.step()
self.logger.log("Debug: Geo mean learning rate:")
for param_group in global_optimizer.param_groups:
self.logger.log(param_group['lr'])
""" 4. Fishr """
if "fishr" in algorithm.split("_"):
# Fishr loss
dict_grad_statistics_averaged = {}
first_dict_grad_statistics = grads_variance_history[0]
for name in first_dict_grad_statistics:
grads_list = []
for dict_grad_statistics in grads_variance_history:
grads = dict_grad_statistics[name]
grads_list.append(grads)
dict_grad_statistics_averaged[name] = torch.stack(
grads_list, dim=0).mean(dim=0)
fishr_loss = 0
for dict_grad_statistics in grads_variance_history:
fishr_loss += l2_between_dicts(
dict_grad_statistics, dict_grad_statistics_averaged)
penalty_weight = (
penalty_weight_factor if round_idx >= penalty_anneal_iters else penalty_weight)
# if penalty_weight > 1.0:
# model_grads_history = [
# [i / penalty_weight for i in grad] for grad in model_grads_history]
# else:
fishr_loss *= penalty_weight
self.logger.log("Fishr loss: {}".format(fishr_loss))
# Fishr Gradients
fishr_gradients = []
global_optimizer.zero_grad()
fishr_loss.backward()
for model_param in list(global_model.parameters()):
grad = model_param.grad
grad_copy = copy.deepcopy(grad.detach())
fishr_gradients.append(grad_copy)
# Model Gradients
model_gradients = []
global_optimizer.zero_grad()
if "hybrid" in algorithm.split("_"):
""" Inter-silo geometric mean """
compute_geo_mean(list(global_model.parameters()),
model_grads_history, 'geo_weighted', 0.001, flags)
else:
compute_arith_mean(
list(global_model.parameters()), model_grads_history)
for model_param in list(global_model.parameters()):
grad = model_param.grad
grad_copy = copy.deepcopy(grad.detach())
model_gradients.append(grad_copy)
# Update global model
global_gradients = [sum(x) for x in zip(
fishr_gradients, model_gradients)]
for param, grads in zip(list(global_model.parameters()), global_gradients):
param.grad = grads
global_optimizer.step()
# 5. Evaluation
ood_test_images, ood_test_labels = ood_validation["images"], ood_validation["labels"]
ood_test_loader = self.data_loader.create_data_loader(
ood_test_images, ood_test_labels, test_batch_size)
ood_test_history = self.evaluator.evaluate_model(global_model,
ood_test_loader,
test_batch_size)
ood_test_loss, ood_test_acc, ood_test_roc, odd_test_pr = ood_test_history
ood_test_loss_np = ood_test_loss.detach().cpu().numpy().copy()
ood_test_acc_np = ood_test_acc.detach().cpu().numpy().copy()
final_ood_loss_history.append(ood_test_loss_np)
final_ood_acc_history.append(ood_test_acc_np)
final_ood_roc_history.append(ood_test_roc)
if ood_test_loss < best_loss and round_idx > 5:
best_loss = ood_test_loss
best_acc = ood_test_acc
best_roc_auc = ood_test_roc
best_pr_auc = odd_test_pr
best_model = global_model
best_round = round_idx
self.logger.log('\n')
self.logger.log('########################################')
self.logger.log('End training round: {}'.format(round_idx + 1))
self.logger.log('[Train] Loss: {}, Accuracy: {}'.format(
final_train_loss, final_train_acc))
self.logger.log('[Test] Loss: {}, Accuracy: {}'.format(
final_test_loss, final_test_acc))
self.logger.log('[OOD Test] Loss: {}, Accuracy: {}, ROC AUC: {}, PR AUC: {}'.format(
ood_test_loss, ood_test_acc, ood_test_roc, odd_test_pr))
self.logger.log('########################################')
self.logger.log('\n')
if round_idx % 50 == 0 and round_idx > 5:
self.logger.log(learning_rate)
path = '{}/mnist-{}-restart-{}-output_checkpoint{}'.format(
log_dir, algorithm, restart + 1, str(round_idx))
# self.logger.log(global_model.state_dict())
torch.save({'global_model': global_model.state_dict(),
'best_model': best_model.state_dict(),
'best_round': best_round,
'best_loss': best_loss,
'best_roc_auc': best_roc_auc,
'best_pr_auc': best_pr_auc,
'best_acc': best_acc,
'global_optimizer': global_optimizer.state_dict(),
'final_train_loss_history': final_train_loss_history,
'final_train_acc_history': final_train_acc_history,
'final_test_loss_history': final_test_loss_history,
'final_test_acc_history': final_test_acc_history,
'final_ood_loss_history': final_ood_loss_history,
'final_ood_acc_history': final_ood_acc_history}, path)
best_loss = best_loss.cpu().numpy().copy()
best_acc = best_acc.cpu().numpy().copy()
plt.title('Train & Test Loss')
plt.plot(final_train_loss_history, label='train_loss')
plt.plot(final_test_loss_history, label='test_loss')
plt.plot(final_ood_loss_history, label='ood_test_loss')
plt.hlines(best_loss, 0, best_round, linestyles='dashed')
plt.xlabel('Round')
plt.ylabel('Loss')
plt.ylim(0.3, 1.0)
plt.legend(['Train Loss', 'Test Loss', 'OOD Test Loss'])
plt.savefig('{}/loss-{}-restart {}.png'.format(log_dir,
algorithm, restart + 1))
plt.close()
plt.title('Train & Test Accuracy')
plt.plot(final_train_acc_history, label='train_acc')
plt.plot(final_test_acc_history, label='test_acc')
plt.plot(final_ood_acc_history, label='ood_test_acc')
plt.hlines(best_acc, 0, best_round, linestyles='dashed')
plt.xlabel('Round')
plt.ylabel('Accuracy')
plt.ylim(0.3, 1.0)
plt.legend(['Train Accuracy', 'Test Accuracy', 'OOD Test Accuracy'])
plt.savefig('{}/acc-{}-restart {}.png'.format(log_dir,
algorithm, restart + 1))
plt.close()
with torch.no_grad():
# Set mode to evaluate model
global_model.eval()
x_test, y_test = ood_validation["images"], ood_validation["labels"]
# total_x_test = torch.from_numpy(x_test)
# total_y_test = torch.from_numpy(y_test)
# total_x_test = total_x_test.to('cuda')
# Predict model
_, logits = global_model(x_test)
# sigmoid = nn.Sigmoid()
# predict_test = sigmoid(logits)
# total_predict_test = (logits > 0.).float()
total_predict_test = logits.cpu()
predict_one_test = total_predict_test.detach().numpy().copy()
predict_one_test[total_predict_test <= 0.5] = np.nan
predict_one_test_mean = np.nanmean(predict_one_test, axis=0)
predict_zero_test = total_predict_test.detach().numpy().copy()
predict_zero_test[total_predict_test > 0.5] = np.nan
predict_zero_test_mean = np.nanmean(predict_zero_test, axis=0)
self.logger.log(predict_one_test_mean)
self.logger.log(predict_zero_test_mean)
self.logger.log(np.count_nonzero(~np.isnan(predict_one_test)))
self.logger.log(np.count_nonzero(~np.isnan(predict_zero_test)))
# Generate a no skill prediction
total_no_skill = [0 for _ in range(len(y_test))]
self.logger.log(len(y_test))
""" Plot ROC Curve """
# Calculate roc curves
y_test = y_test.cpu().detach().numpy().copy()
ns_fpr, ns_tpr, _ = roc_curve(y_test, total_no_skill)
lr_fpr, lr_tpr, _ = roc_curve(y_test, total_predict_test)
# Calculate scores
ns_auc = roc_auc_score(y_test, total_no_skill)
lr_auc = roc_auc_score(y_test, total_predict_test)
self.logger.log('No skill ROC score: {}'.format(ns_auc))
self.logger.log('Proposed model ROC score: {}'.format(lr_auc))
plt.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
plt.plot(lr_fpr, lr_tpr, marker='.', label='Proposed Model')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.savefig('{}/roc-{}-restart {}.png'.format(log_dir,
algorithm, restart + 1))
plt.close()
self.logger.log("Best Loss: {}".format(best_loss))
self.logger.log("Best Accuracy: {}".format(best_acc))
self.logger.log("Best Round: {}".format(best_round))
self.logger.log('Best ROC AUC: {}'.format(best_roc_auc))
self.logger.log('Best PR AUC: {}'.format(best_pr_auc))
"""
### Load Dataset
"""
def __load_dataset(self):
mnist = datasets.MNIST('~/datasets/mnist', train=True, download=True)
mnist_train = (mnist.data[:50000], mnist.targets[:50000])
mnist_val = (mnist.data[50000:], mnist.targets[50000:])
rng_state = np.random.get_state()
np.random.shuffle(mnist_train[0].numpy())
np.random.set_state(rng_state)
np.random.shuffle(mnist_train[1].numpy())
self.logger.log((mnist_val[0]).shape)
train_envs = [
# Client 1 Train
self.data_loader.make_environment(
mnist_train[0][:40000:5], mnist_train[1][:40000:5], color_flipping_prob=0.15, label_flipping_prob=0.0),
# Client 2 Train
self.data_loader.make_environment(
mnist_train[0][1:40001:5], mnist_train[1][1:40001:5], color_flipping_prob=0.3, label_flipping_prob=0.0),
# Client 3 Train
self.data_loader.make_environment(
mnist_train[0][2:40002:5], mnist_train[1][2:40002:5], color_flipping_prob=0.45, label_flipping_prob=0.0),
# Client 4 Train
self.data_loader.make_environment(
mnist_train[0][3:40003:5], mnist_train[1][3:40003:5], color_flipping_prob=0.6, label_flipping_prob=0.0),
# Client 5 Train
self.data_loader.make_environment(
mnist_train[0][4:40004:5], mnist_train[1][4:40004:5], color_flipping_prob=0.75, label_flipping_prob=0.0)
]
test_envs = [
# Client 1 Validation
self.data_loader.make_environment(
mnist_train[0][40000::5], mnist_train[1][40000::5], color_flipping_prob=0.15, label_flipping_prob=0.0),
# Client 2 Validation
self.data_loader.make_environment(
mnist_train[0][40001::5], mnist_train[1][40001::5], color_flipping_prob=0.3, label_flipping_prob=0.0),
# Client 3 Validation
self.data_loader.make_environment(
mnist_train[0][40002::5], mnist_train[1][40002::5], color_flipping_prob=0.45, label_flipping_prob=0.0),
# Client 4 Validation
self.data_loader.make_environment(
mnist_train[0][40003::5], mnist_train[1][40003::5], color_flipping_prob=0.6, label_flipping_prob=0.0),
# Client 5 Validation
self.data_loader.make_environment(
mnist_train[0][40004::5], mnist_train[1][40004::5], color_flipping_prob=0.75, label_flipping_prob=0.0)
]
ood_validation = self.data_loader.make_environment(
mnist_val[0], mnist_val[1], color_flipping_prob=0.9, label_flipping_prob=0.15)
return train_envs, test_envs, ood_validation
"""
### Create federated clients
"""
def __create_clients(self, train_envs, test_envs, train_batch_size, test_batch_size, learning_rate):
# Create federated clients
clients = []
for client_id, (train_env, test_env) in enumerate(zip(train_envs, test_envs)):
train_images, train_labels = train_env["images"], train_env["labels"]
test_images, test_labels = test_env["images"], test_env["labels"]
train_loader = self.data_loader.create_data_loader(
train_images, train_labels, train_batch_size)
test_loader = self.data_loader.create_data_loader(
test_images, test_labels, test_batch_size)
# Each client has one local model
local_model = MnistMLP(390)
client = FederatedClient(self.trainer, self.evaluator, client_id, local_model,
train_loader, train_images, train_labels,
test_loader, learning_rate, self.logger)
clients.append(client)
return clients