-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfilterFGx.m
100 lines (80 loc) · 2.7 KB
/
filterFGx.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
function [filtdat,empVals,fx] = filterFGx(data,srate,f,fwhm,showplot)
% filterFGx Narrow-band filter via frequency-domain Gaussian
% [filtdat,empVals] = filterFGx(data,srate,f,fwhm,showplot)
%
%
% INPUTS
% data : 1 X time or chans X time
% srate : sampling rate in Hz
% f : peak frequency of filter
% fhwm : standard deviation of filter,
% defined as full-width at half-maximum in Hz
% showplot : set to true to show the frequency-domain filter shape
%
% OUTPUTS
% filtdat : filtered data
% empVals : the empirical frequency and FWHM (in Hz and in ms)
%
% Empirical frequency and FWHM depend on the sampling rate and the
% number of time points, and may thus be slightly different from
% the requested values.
%
% mikexcohen@gmail.com
%% input check
if size(data,1)>size(data,2)
% help filterFGx
% error('Check data size')
end
if (f-fwhm)<0
% help filterFGx
% error('increase frequency or decrease FWHM')
end
if nargin<4
help filterFGx
error('Not enough inputs')
end
if fwhm<=0
error('FWHM must be greater than 0')
end
if nargin<5
showplot=false;
end
%% compute and apply filter
% frequencies
hz = linspace(0,srate,size(data,2));
% create Gaussian
s = fwhm*(2*pi-1)/(4*pi); % normalized width
x = hz-f; % shifted frequencies
fx = exp(-.5*(x/s).^2); % gaussian
fx = fx./abs(max(fx)); % gain-normalized
%% filter
% filtdat = 2*real( ifft( bsxfun(@times,fft(data,[],2),fx) ,[],2) );
filtdat = 2*real(ifft( fft(data,[],2).*fx ,[],2));
%% compute empirical frequency and standard deviation
idx = dsearchn(hz',f);
empVals(1) = hz(idx);
% find values closest to .5 after MINUS before the peak
empVals(2) = hz(idx-1+dsearchn(fx(idx:end)',.5)) - hz(dsearchn(fx(1:idx)',.5));
% also temporal FWHM
tmp = abs(hilbert(real(fftshift(ifft(fx)))));
tmp = tmp./max(tmp);
tx = (0:length(data)-1)/srate;
[~,idxt] = max(tmp);
empVals(3) = (tx(idxt-1+dsearchn(tmp(idxt:end)',.5)) - tx(dsearchn(tmp(1:idxt)',.5)))*1000;
%% inspect the Gaussian (turned off by default)
if showplot
figure(10001+showplot),clf
subplot(211)
plot(hz,fx,'o-')
hold on
plot([hz(dsearchn(fx(1:idx)',.5)) hz(idx-1+dsearchn(fx(idx:end)',.5))],[fx(dsearchn(fx(1:idx)',.5)) fx(idx-1+dsearchn(fx(idx:end)',.5))],'k--')
set(gca,'xlim',[max(f-10,0) f+10]);
title([ 'Requested: ' num2str(f) ', ' num2str(fwhm) ' Hz; Empirical: ' num2str(empVals(1)) ', ' num2str(empVals(2)) ' Hz' ])
xlabel('Frequency (Hz)'), ylabel('Amplitude gain')
subplot(212)
tmp1 = real(fftshift(ifft(fx))); tmp1 = tmp1./max(tmp1);
tmp2 = abs(hilbert(tmp1));
plot(tx,tmp1, tx,tmp2), zoom on
xlabel('Time (s)'), ylabel('Amplitude gain')
end
%% done.