-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_distshift_randomized_mp.py
105 lines (99 loc) · 7.97 KB
/
run_distshift_randomized_mp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
THIS IS THE MAIN SCRIPT FOR EXPERIMENTS
MP STANDS FOR MULTI PROCESSING
"""
import tensorflow as tf
gpus = tf.config.list_physical_devices('GPU')
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
assert tf.config.experimental.get_memory_growth(gpu)
except: # Invalid device or cannot modify virtual devices once initialized.
pass
import argparse, multiprocessing
from utils import *
from runtime import generate_comments, get_set_seed
import utils_mp, utils_mp_dyna
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
# arguments for experiment setting
parser.add_argument('--method', type=str, default='DQN_CP', help='type of agent')
parser.add_argument('--game', type=str, default='RandDistShift', help='RandDistShift or KeyRandDistShift')
parser.add_argument('--version_game', type=str, default='v1', help='v1 (for turn-OR-forward) or v3 (for turn-AND-forward)')
parser.add_argument('--size_world', type=int, default=8, help='the length of each dimension for gridworlds')
parser.add_argument('--color_distraction', type=int, default=0, help='for random colors added to every observation')
# arguments for component switches
parser.add_argument('--ignore_TD', type=int, default=0, help='turn this on to disable value estimator learning')
parser.add_argument('--ignore_model', type=int, default=0, help='turn this on for modelfree agents')
parser.add_argument('--noise_inject', type=int, default=0, help='inject noise into transition model')
parser.add_argument('--prioritized_replay', type=int, default=1, help='prioritized replay buffer, good stuff!')
parser.add_argument('--disable_bottleneck', type=int, default=0, help='1 to disable bottleneck, making CP agent UP')
parser.add_argument('--layers_model', type=int, default=1, help='#action-augmented transformer layers for dynamics model')
parser.add_argument('--len_feature', type=int, default=24, help='length of the feature part of the object embeddings')
parser.add_argument('--step_plan_max', type=int, default=5, help='#planning steps')
parser.add_argument('--size_bottleneck', type=int, default=8, help='size of bottleneck set')
parser.add_argument('--len_ebd_action', type=int, default=8, help='length of action embedding')
parser.add_argument('--type_extractor', type=str, default='minigrid_bow', help='encoder architecture')
parser.add_argument('--extractor_learnable', type=int, default=1, help='make encoder learnable')
parser.add_argument('--len_embed_pos', type=int, default=8, help='length of positional embedding')
parser.add_argument('--type_attention', type=str, default='semihard', help='could also be soft')
# arguments that shouldn't be configured
parser.add_argument('--lr', type=float, default=0.00025, help='learning rate')
parser.add_argument('--freq_train_TD', type=int, default=4, help='training interval for value estimator, every 4 steps train with 1 batch')
parser.add_argument('--freq_train_model', type=int, default=4, help='training interval for transition model')
parser.add_argument('--gamma', type=float, default=0.99, help='discount')
parser.add_argument('--size_buffer', type=int, default=1000000, help='size of replay buffer')
parser.add_argument('--size_batch', type=int, default=64, help='batch size for training')
parser.add_argument('--type_optimizer', type=str, default='Adam', help='feel free to try RMSprop')
parser.add_argument('--framestack', type=int, default=0, help='could use this for Atari')
parser.add_argument('--steps_max', type=int, default=50000000, help='set to be 50M for DQN to perform normally, since exploration period is a percentage')
parser.add_argument('--steps_stop', type=int, default=2500000, help='#agent-environment interactions before the experiment stops')
parser.add_argument('--episodes_max', type=int, default=50000000, help='a criterion just in case we need it')
parser.add_argument('--freq_eval', type=int, default=500, help='interval of periodic evaluation')
parser.add_argument('--seed', type=str, default='', help='if not set manually, would be random')
parser.add_argument('--layernorm', type=int, default=1, help='layer normalization')
parser.add_argument('--atoms_value', type=int, default=4, help='#atoms for value estimator categorical output')
parser.add_argument('--value_min', type=float, default=0.0, help='lower boundary for value estimator output')
parser.add_argument('--value_max', type=float, default=1.0, help='upper boundary for value estimator output')
parser.add_argument('--transform_value', type=int, default=0, help='reserved for environments with varying value magunitudes')
parser.add_argument('--atoms_reward', type=int, default=2, help='#atoms for reward predictor categorical output')
parser.add_argument('--reward_min', type=float, default=0.0, help='lower boundary for reward predictor output')
parser.add_argument('--reward_max', type=float, default=1.0, help='upper boundary for reward predictor output')
parser.add_argument('--transform_reward', type=int, default=0, help='reserved for environments with varying reward magunitudes')
parser.add_argument('--clip_reward', type=int, default=1, help='clip the reward to sign(reward) as in DQN')
parser.add_argument('--n_head', type=int, default=8, help='#heads in the SA layers of (augmented) transformer layers')
parser.add_argument('--signal_predict_action', type=int, default=1, help='inverse model regularization')
parser.add_argument('--QKV_depth', type=int, default=1, help='depth of QKV layers in SA layers')
parser.add_argument('--QKV_width', type=int, default=64, help='width of QKV layers in SA layers, does not matter if QKV_depth == 1')
parser.add_argument('--FC_depth', type=int, default=2, help='depth of MLP in transformer layers')
parser.add_argument('--FC_width', type=int, default=64, help='width of MLP in transformer layers')
# arguments for identification
parser.add_argument('--comments', type=str, default='x', help='use x for default. If changed, the run will be marked with the string')
# for multiworker
parser.add_argument('--gpu_buffer', type=int, default=0, help='turn this on to put observations in replay onto GPU')
parser.add_argument('--num_explorers', type=int, default=1, help='')
parser.add_argument('--gpu_explorer', type=int, default=0, help='')
parser.add_argument('--gpu_evaluator', type=int, default=0, help='')
# Dyna specific
parser.add_argument('--learn_dyna_model', type=int, default=0, help='when used with DQN_Dyna, 1 for Dyna, 0 for Dyna*')
# NOSET specific
parser.add_argument('--len_hidden', type=int, default=256, help='only for NOSET, length of the vectorized representation')
# WM specific
parser.add_argument('--period_warmup', type=int, default=int(1e6), help='unsupervised exploration period for WM baselines')
# for performance
parser.add_argument('--visualization', type=int, default=0, help='render bottleneck attention')
parser.add_argument('--env_pipeline', type=int, default=1, help='environment generation pipeline, use if many cores')
parser.add_argument('--performance_only', type=int, default=0, help='disable recording debug info, to accelerate experiments')
args = parser.parse_args()
env = utils_mp.get_env_minigrid_train(args)
if args.clip_reward: args.transform_reward, args.reward_min, args.reward_max = False, -1.0, 1.0
args.reward_min, args.reward_max = float(min(env.reward_range)), float(max(env.reward_range))
if args.reward_min >= 0: args.value_min = args.reward_min
args = generate_comments(args, additional='')
args.seed = get_set_seed(args.seed, env)
# MAIN
multiprocessing.set_start_method('spawn', force=True)
if args.method in 'DQN_Dyna':
utils_mp_dyna.run_multiprocess(args, utils_mp.get_env_minigrid_train, utils_mp.get_env_minigrid_test)
else:
utils_mp.run_multiprocess(args, utils_mp.get_env_minigrid_train, utils_mp.get_env_minigrid_test)