-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
232 lines (209 loc) · 12.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""
UTILITIES AND TOOLS
"""
from runtime import *
import tensorflow as tf
import numpy as np
# EPSILON = np.finfo(tf.float32.as_numpy_dtype).tiny
# @tf.function
# def gumbel_keys(w): # sample some gumbels, adding gumbel perturbation to the weights
# return w + tf.math.log(-tf.math.log(tf.random.uniform(tf.shape(w), minval=EPSILON, maxval=1.0)))
# @tf.function
# def continuous_topk(w, k, t, separate=False):
# khot_list = []
# onehot_approx = tf.zeros_like(w, dtype=tf.float32)
# for _ in range(k):
# khot_mask = tf.maximum(1.0 - onehot_approx, EPSILON)
# w += tf.math.log(khot_mask) # accummulating log-softmax
# onehot_approx = tf.nn.softmax(w / t, axis=-1)
# khot_list.append(onehot_approx)
# if separate:
# return khot_list
# else:
# return tf.reduce_sum(khot_list, 0)
# @tf.function
# def sample_subset(w, k, t=0.1):
# '''
# w (Tensor): Float Tensor of weights for each element. In gumbel mode these are interpreted as log probabilities
# k (int): number of elements in the subset sample
# t (float): temperature of the softmax
# '''
# return continuous_topk(gumbel_keys(w), k, t)
@tf.function
def to_categorical(value, value_min=-1, value_max=1, atoms=128, transform=False, clip=True):
if transform:
value = h_transform(value, 1)
bounds = h_transform(tf.constant([value_min, value_max], dtype=tf.float32), 1)
value_min, value_max = bounds[0], bounds[1]
if clip: value = tf.clip_by_value(value, clip_value_min=value_min, clip_value_max=value_max)
value = (value - value_min) * (atoms - 1) / (value_max - value_min)
upper = tf.cast(tf.math.ceil(value), dtype=tf.int32)
upper_weight = value % 1
lower = tf.cast(tf.math.floor(value), dtype=tf.int32)
lower_weight = 1 - upper_weight
span = tf.range(value.shape[0], dtype=tf.int32)
indices_upper = tf.stack([span, upper], axis=-1)
indices_lower = tf.stack([span, lower], axis=-1)
dist = tf.scatter_nd(indices_upper, upper_weight, value.shape + [atoms])
dist = tf.tensor_scatter_nd_update(dist, indices=indices_lower, updates=lower_weight)
return dist
@tf.function
def from_categorical(dist, value_min=-1, value_max=1, atoms=128, transform=False):
support = tf.expand_dims(tf.cast(tf.range(start=0, limit=atoms, delta=1), dtype=tf.float32), axis=-1)
value = tf.squeeze(dist @ support, [-1])
if transform:
bounds = h_transform(tf.constant([value_min, value_max], dtype=tf.float32), 1)
value_min, value_max = bounds[0], bounds[1]
value = value_min + value * (value_max - value_min) / (atoms - 1)
if transform: value = h_transform(value, -1)
return value
@tf.function
def h_transform(x, order, eps=1e-2): # https://arxiv.org/abs/1805.11593
if order == 1:
return tf.math.sign(x) * (tf.math.sqrt(tf.math.abs(x) + 1) - 1) + eps * x
elif order == -1:
return tf.math.sign(x) * (tf.math.pow((tf.math.sqrt(1.0 + 4.0 * eps * (tf.math.abs(x) + 1.0 + eps)) - 1.0) / (2.0 * eps), 2) - 1.0)
def embed_pos_hd(dims, len_embed_pos=8):
dims = list(dims)
convh, convw = dims[-2], dims[-1]
embed_pos1 = np.zeros((convh, convw, 2))
for i in range(convh):
for j in range(convw):
embed_pos1[i, j, 0] = i
embed_pos1[i, j, 1] = j
embed_pos1 = np.reshape(embed_pos1, (-1, 2))
embed_pos2 = np.zeros((convh, convw, 2))
for i in range(convh):
for j in range(convw):
embed_pos2[i, j, 0] = convh - i - 1
embed_pos2[i, j, 1] = j
embed_pos2 = np.reshape(embed_pos2, (-1, 2))
embed_pos3 = np.zeros((convh, convw, 2))
for i in range(convh):
for j in range(convw):
embed_pos3[i, j, 0] = i
embed_pos3[i, j, 1] = convw - j - 1
embed_pos3 = np.reshape(embed_pos3, (-1, 2))
embed_pos4 = np.zeros((convh, convw, 2))
for i in range(convh):
for j in range(convw):
embed_pos4[i, j, 0] = convh - i - 1
embed_pos4[i, j, 1] = convw - j - 1
embed_pos4 = np.reshape(embed_pos4, (-1, 2))
embed_pos = np.stack([embed_pos1[:, 0], embed_pos2[:, 0], embed_pos3[:, 0], embed_pos4[:, 0], embed_pos1[:, 1], embed_pos2[:, 1], embed_pos3[:, 1], embed_pos4[:, 1]], axis=-1)
# embed_pos = np.concatenate([embed_pos1, embed_pos2, embed_pos3, embed_pos4], axis=-1)
dim_optimal = 8
embed_pos = tf.convert_to_tensor(embed_pos, dtype=tf.float32)
embed_pos = tf.expand_dims(embed_pos, 0)
if len_embed_pos < 8:
assert len_embed_pos % 2 == 0
embed_pos = embed_pos[:, :, 0: len_embed_pos]
dim_optimal = len_embed_pos
return embed_pos, dim_optimal
def shape_list(x):
"""Return list of dims, statically where possible."""
x = tf.convert_to_tensor(x)
if x.get_shape().dims is None: # If unknown rank, return dynamic shape
return tf.shape(x)
static = x.get_shape().as_list()
shape = tf.shape(x)
ret = []
for i in range(len(static)):
dim = static[i]
if dim is None:
dim = shape[i]
ret.append(dim)
return ret
@tf.function
def huber_from_L1(abs_error, delta=1.0):
quadratic = tf.math.minimum(abs_error, delta)
linear = abs_error - quadratic
return tf.reduce_mean(0.5 * tf.math.multiply(quadratic, quadratic) + delta * linear, axis=-1)
@tf.function
def clip_gradients(gradients):
return [None if grad is None else tf.clip_by_value(grad, clip_value_min=-1, clip_value_max=1) for grad in gradients]
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, len_object, num_heads, QKV_depth=1, QKV_width=256, top_k=np.inf):
super(MultiHeadAttention, self).__init__(name='MHA')
self.top_k = top_k
self.len_object, self.num_heads = len_object, num_heads
if num_heads == 0: self.num_heads = len_object
assert len_object % self.num_heads == 0
self.depth = len_object // self.num_heads
if QKV_depth == 1:
self.wq, self.wk, self.wv = tf.keras.layers.Dense(len_object), tf.keras.layers.Dense(len_object), tf.keras.layers.Dense(len_object)
else:
self.wq, self.wk, self.wv = tf.keras.models.Sequential(), tf.keras.models.Sequential(), tf.keras.models.Sequential()
for num_layer in range(QKV_depth):
if num_layer == QKV_depth - 1: # last layer
self.wq.add(tf.keras.layers.Dense(len_object))
self.wk.add(tf.keras.layers.Dense(len_object))
self.wv.add(tf.keras.layers.Dense(len_object))
else:
self.wq.add(tf.keras.layers.Dense(QKV_width, activation='relu'))
self.wk.add(tf.keras.layers.Dense(QKV_width, activation='relu'))
self.wv.add(tf.keras.layers.Dense(QKV_width, activation='relu'))
self.dense = tf.keras.layers.Dense(len_object)
@tf.function
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
@tf.function
def __call__(self, v, k, q):
batch_size = q.shape[0]
q = self.split_heads(self.wq(q), batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(self.wk(k), batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(self.wv(v), batch_size) # (batch_size, num_heads, seq_len_v, depth)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, top_k=self.top_k) # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth), attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.len_object)) # (batch_size, seq_len_q, len_object)
output = self.dense(concat_attention) # (batch_size, seq_len_q, len_object)
return output, attention_weights
@tf.function
def scaled_dot_product_attention(q, k, v, top_k=np.inf):
"""Calculate the attention weights.
q, k, v must have matching leading dimensions.
k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
Args:
q: query shape == (..., seq_len_q, depth)
k: key shape == (..., seq_len_k, depth)
v: value shape == (..., seq_len_v, depth_v)
Returns:
output, attention_weights
"""
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
# scale matmul_qk
scaled_attention_logits = matmul_qk / tf.math.sqrt(tf.cast(k.shape[-1], tf.float32)) # dk = tf.cast(tf.shape(k)[-1], tf.float32)
# softmax is normalized on the last axis (seq_len_k) so that the scores add up to 1.
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
size_batch, num_heads, num_queries, num_keys = attention_weights.shape
if top_k < num_keys:
attention_weights_top_k, indices_top_k = tf.math.top_k(attention_weights, k=top_k, sorted=True)
# indices_QxK = tf.concat([tf.reshape(tf.range(num_queries), [-1, 1, 1]) + tf.zeros([num_queries, num_keys, 1], dtype=tf.int32), tf.repeat(tf.reshape(tf.range(num_keys), [1, -1, 1]), num_queries, axis=0)], axis=-1)
# indices_HxQxK = tf.concat([tf.reshape(tf.range(num_heads), [-1, 1, 1, 1]) + tf.zeros([num_heads, num_queries, num_keys, 1], dtype=tf.int32), tf.repeat(tf.expand_dims(indices_QxK, 0), num_heads, axis=0)], axis=-1)
# indices_BxHxQxK = tf.concat([tf.reshape(tf.range(size_batch), [-1, 1, 1, 1, 1]) + tf.zeros([size_batch, num_heads, num_queries, num_keys, 1], dtype=tf.int32), tf.repeat(tf.expand_dims(indices_HxQxK, 0), size_batch, axis=0)], axis=-1)
# indices_QxK = tf.concat([tf.reshape(tf.range(num_queries), [-1, 1, 1]) + tf.zeros([num_queries, top_k, 1], dtype=tf.int32), tf.repeat(tf.reshape(tf.range(top_k), [1, -1, 1]), num_queries, axis=0)], axis=-1)
# indices_HxQxK = tf.concat([tf.reshape(tf.range(num_heads), [-1, 1, 1, 1]) + tf.zeros([num_heads, num_queries, top_k, 1], dtype=tf.int32), tf.repeat(tf.expand_dims(indices_QxK, 0), num_heads, axis=0)], axis=-1)
# indices_BxHxQxK = tf.concat([tf.reshape(tf.range(size_batch), [-1, 1, 1, 1, 1]) + tf.zeros([size_batch, num_heads, num_queries, top_k, 1], dtype=tf.int32), tf.repeat(tf.expand_dims(indices_HxQxK, 0), size_batch, axis=0)], axis=-1)
# indices_stacked = tf.concat([indices_BxHxQxK[:, :, :, :, :-1], tf.expand_dims(indices_top_k, -1)], axis=-1)
# indices_top_k = tf.cast(indices_top_k, tf.int32)
indices_stacked = tf.concat([tf.repeat(tf.expand_dims(tf.concat([tf.repeat(tf.expand_dims(tf.stack([tf.repeat(tf.expand_dims(tf.range(size_batch, dtype=tf.int32), axis=-1), num_heads, axis=1), tf.repeat(tf.reshape(tf.range(num_heads, dtype=tf.int32), [1, num_heads]), size_batch, axis=0)], -1), 2), num_queries, axis=2), tf.reshape(tf.range(num_queries, dtype=tf.int32), [1, 1, num_queries, 1]) + tf.zeros([size_batch, num_heads, num_queries, 1], dtype=tf.int32)], axis=-1), axis=-2), top_k, axis=-2), tf.expand_dims(indices_top_k, -1)], axis=-1)
attention_weights = tf.scatter_nd(tf.stop_gradient(indices_stacked), attention_weights_top_k, [size_batch, num_heads, num_queries, num_keys])
attention_weights, _ = tf.linalg.normalize(attention_weights, ord=1, axis=-1)
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
return output, attention_weights
@tf.function
def mask_change_minigrid(obs_t, obs_tp1):
size_batch, _, _, len_feature = obs_t.shape
obs_t = tf.reshape(obs_t, [size_batch, -1, len_feature])
obs_tp1 = tf.reshape(obs_tp1, [size_batch, -1, len_feature])
mask_cheat = tf.math.reduce_any(tf.not_equal(obs_t, obs_tp1), axis=-1)
return mask_cheat
class LinearSchedule(object):
def __init__(self, schedule_timesteps, final_p, initial_p=1.0):
self.schedule_timesteps = schedule_timesteps
self.final_p = final_p
self.initial_p = initial_p
def value(self, t):
fraction = min(float(t) / self.schedule_timesteps, 1.0)
return self.initial_p + fraction * (self.final_p - self.initial_p)